
Scalable Power Grid Transient Analysis
via MOR-Assisted Time-Domain Simulations

Jia Wang and Xuanxing Xiong
Department of Electrical and Computer Engineering

Illinois Institute of Technology, Chicago, IL 60616, USA

Abstract—Time domain power grid simulations provide accurate
estimations of power supply noises for design verifications. Despite
extensive researches, it remains a very challenging problem to perform the
simulations efficiently – the large power grid sizes demand tremendous
computational resources and the causality between consecutive time steps
hinders parallel implementations. Frequency domain and model order
reduction (MOR) techniques promise scalability, though the solution
accuracy may become a concern without trading off running time. In this
paper, we present a framework for power grid transient analysis where
time domain simulations are assisted by MOR techniques for scalability
without losing much of the solution accuracy. Utilizing a direct sparse
matrix solver and the multinode moment matching technique, we are able
to achieve more than 5X speed-up using 16 processor cores distributed
over two servers when simulating 1000 time steps for all the six IBM
power grid simulation benchmarks, in comparison to the time domain
simulations using only the direct solver.

I. INTRODUCTION

Modern design verifications rely heavily on power grid analysis
to provide estimations of power supply noises. Time domain simu-
lations based on implicit numerical integration techniques including
backward Euler and trapezoidal methods are widely adopted and are
usually treated as “golden” for transient analysis. The rapid growth
of parallel and distributed computing platforms makes it desirable,
though extremely challenging, to build scalable transient analysis
tools in order to handle the increasing power delivery complexity.

Time domain simulations depend on a sparse matrix solver to
solve the system of linear equations at each time step As this solver
contributes to most of the memory usage and the simulation time, it
is the major focus for parallellization. When the memory usage of
the solver is beyond the capacity of a single machine, hierarchical
analysis [21] can be applied to partition the power grid and to
distribute the job to multiple machines. For DC analysis where a
single time step is of concern, parallel solvers exploiting various
feature of power grids and leveraging advanced numerical methods
including multigrid [5], [6], fast transform [3], and additive Schwarz
method [14], [20] have shown great success over direct solvers based
on LU decomposition in both memory usage and running time.
However, for transient analysis where the LU decompositions are
usually computed at the very beginning, it is very difficult to achieve
speed-ups in comparison to the direct solvers when there is enough
memory since only a pair of forward and back substitutions are
necessary at each time step [12]. Though one may parallelize forward
and back substitutions either by partitioning the power grid before
LU decompositions [21], [14], [17], or by partitioning the L and
U matrices [19], [18], [17], both approaches suffer from their own
shortcomings. For the former approach, the number of fill-ins is a
concern and if fill-ins are dropped to maintain the sparsity of the L
and U matrices, solution accuracy has to be guaranteed via an iterative
solver that introduces additional overhead. For the latter approach,
the availablility of parallelism is a concern and less than 2X speed-
ups were observed [12]. Moreover, it is demonstrated in [17] that

978-1-4799-1071-7/13/$31.00 c©2013 IEEE

even when there is ample parallelism to be exploited, the memory
traffic required by multiple forward and back substitutions running in
parallel on a single machine could be the limiting factor that prevents
better scaling. Overall, although it is possible to parallelize the sparse
matrix solver, the causality between consecutive time steps are not
removed. The simulation time will remain proportional to the number
of the time steps no matter how many machines are available, and
the performance on parallel and distributed platforms may be further
constrained by the communications required at the boundary of the
time steps.

On the other hand, in theory it is possible to obtain power supply
noises in a scalable manner – since the power grid is a linear time-
invariant (LTI) system, the noise for any node at any time is the
convolution of the past inputs and the impulse responses. In practice,
frequency domain [22], [8], model order reduction (MOR) [15], [10],
[11], and matrix exponential [16] methods have been studied as alter-
natives to time domain simulations for power grid transient analysis
and show promises of scalability as they do not depend on the time
steps explicitly. However, these methods are still quite costly if similar
accuracy as time domain simulations is desired due to the difficulty
in handling current excitations. For frequency domain methods, the
overheads in both running time and storage are introduced when
converting the independent sources, especially those rapid changing
ones, from the time domain into the frequency domain as their
spectrums are not bounded. For MOR techniques, the effectiveness
degrades when there are many independent sources that cannot be
abstracted away, which is usually the case for power grid transient
analysis. As independent sources are not a concern for time domain
simulations, it is highly desirable if a transient analysis algorithm
could combine the advantages of both time domain simulations and
LTI techniques for accuracy, efficiency, and scalability.

In this paper, we propose a framework for power grid transient
analysis that leverages MOR techniques to assist time domain sim-
ulations in order to achieve scalability without affecting accuracy
and efficiency. We partition the time steps into intervals and defining
for each interval a current excitation that equals to the actual input
wthin the interval, but is zero elsewhere. According to the well-
known superposition property of LTI systems, the actual noises are the
summations of the responses to this set of current excitations. Note
that although the responses can be computed independently, to obtain
them directly from time domain simulations will not have any benefit
– in the worst case the number of the time steps are not reduced.
We propose to circumvent this difficulty by applying time domain
simulations only to the non-zero parts of the current excitations. MOR
techniques are then applied to estimate the responses when the current
excitations are zero. From the perspective of MOR techniques, in
our framework time domain simulations are applied to circumvent
the need to convert independent sources. Combining a direct sparse
matrix solver for time domain simulations and the multinode moment
matching technique [9] for MOR in our proposed framework, we are
able to achieve more than 5X speed-up using 16 processor cores

distributed over two servers when simulating 1000 time steps for
all the six IBM power grid simulation benchmarks, in comparison
to the time domain simulations using the direct solver along, without
applying paralellization of forward and back substitutions. We further
note that one of the most important features of our framework is that
it is orthogonal to most existing parallel and distriubted algorithms
and thus it is possible to integrate them into our framework for better
scalability.

The rest of this paper is organized as follows. Time domain
simulation and multinode moment matching are reviewed in Sec-
tion II. Our proposed framework is presented in Section III. After
experimental results are discussed in Section IV, Section V concludes
the paper.

II. PRELIMINARIES

A. Time Domain Simulation

The power grid transient analysis problem seeks a numerical
solution of the ordinary differential equation (ODE) in Eq. (1) derived
by modified nodal analysis (MNA) [7].

Gv(t) + Cv′(t) + BT i(t) = I(t),

Bv(t) = Li′(t). (1)

In the above equation, v(t) and i(t) are unknown nodal noises
and branch currents. The independent current sources entering each
node are given as I(t). Suppose there are n nodes and l inductive
branches in the power grid. Then G and C are n × n diagonally
dominant symmetric matrices obtained from resistor and capacitor
stamps, B is a l× n matrix of 0/1/−1 representing the directions of
the inductive branches and the nodes they incident on, and L is an
l × l matrix specifying the mutual and self inductances among the
inductive branches.

Choosing a time step h, Eq. (1) can be solved by time domain
simulations based on implicit numerical integration techniques. Let
vk = v(kh), ik = i(kh), and Ik = I(kh) for k = 0, 1, Time
domain simulations first solve for v0 and i0 using the following DC
initial condition,

A

„
v0
i0

«
=

„
I0
0

«
, where A ∆

=

„
G BT

B 0

«
. (2)

Successive vk’s and ik’s for k > 0 are then solved iteratively, e.g. by
the trapezoidal rule as follows,

Ah

„
vk+1

ik+1

«
= −Bh

„
vk

ik

«
+

„
Ik+1 + Ik

0

«
, (3)

where the matrices Ah and Bh are defined as,

Ah
∆
=

„
G+ 2

h
C BT

B − 2
h
L

«
, Bh

∆
=

„
G− 2

h
C BT

B 2
h
L

«
. (4)

Eq. (2) and (3) are usually solved by direct solvers via a pair of
forward and back substitutions assuming the LU decompositions of
A and Ah are computed once at the beginning. Note that both A and
Ah should not be singular – for power grids, this is guaranteed by a
reasonable assumption requiring that there is no inductive loop and
that every node has a resistive path to either ground or power supply.

If the memory usage to store the L and U metrices is of concern
and there is no mutual inductance, i.e. L is a diagonal matrix,
then Eq. (3) can be transformed into a system of linear equations
with the left-hand-side system matrix being diagonally dominant and

symmetric [1]. In such case, the memory usage can be reduced
by half by Cholesky decomposition, and can be further reduced
via preconditioned conjugate gradient solvers. We point out that
Eq. (2) with arbitrary right-hand-side vectors can also be transformed
into a system of similar properties utilizing B’s nullspace, which
is essentially the connected components spanned by the inductive
branches, making it possible to reduce its memory usage as well.

B. Multinode Moment Matching

Moment matching is among the most popular MOR techniques
for linear circuit simulations because of its simplicity. It builds a
reduced-order model of the circuit by approximating the responses at
circuit outputs by a small number of poles and residues computed
via matching the actual and the approximated moments. While
single-point moment matching techniques like asymptotic waveform
evaluation (AWE) [13] compute poles independently for each output,
the multinode moment matching (MMM) method [9] assumes the
same set of poles across all the outputs, and thus requires much less
moments to be matched for the same accuracy.

While MMM is able to handle multiple inputs, we are only
interested in the responses under certain initial conditions as required
by our proposed framework. Assume that I(t) = 0 for t > 0 in
Eq. (1). Let vs and is be the Laplace transforms of v(t) and i(t)
respectively. For a given initial condition of v(0) and i(0), Eq. (1)
can be transformed into,

A

„
vs

is

«
=

„
Cv(0)
−Li(0)

«
+ s

„
−Cvs

Lis

«
, (5)

where the matrix A is defined in Eq. (2). Let the Taylor series of vs

and is around s = 0 be

vs = α0 + α1s+ α2s
2 + α3s

3 + · · · ,
is = β0 + β1s+ β2s

2 + β3s
3 + · · · . (6)

Comparing both sides of Eq. (5) after substituting vs and is by their
respective Taylor series, the kth moment (αk, βk) for k = 0, 1, 2, . . .
can be computed from given v(0) and i(0) iteratively,

A

„
α0

β0

«
=

„
Cv(0)
−Li(0)

«
, A

„
αk+1

βk+1

«
=

„
−Cαk

Lβk

«
. (7)

To build a reduced order system of order q, the first q+1 moments
(α0, β0), (α1, β1), . . ., (αq, βq) are computed according to Eq. (7).
Then, q outputs should be chosen 1 and for every k = 0, 1, . . . , q, a
q × 1 moment vector mk is extracted from (αk, βk) corresponding
to them. As long as m1,m2,. . .,mq are linearly independent, the q
poles of the reduced order system are computed as the eigenvalues
of the matrix Γ defined as,

Γ
∆
= (m0m1 · · ·mq−1)(m1m2 · · ·mq)−1. (8)

Finally, for each output of interests that could be different from the
chosen q outputs, its q residues can be obtained by solving a system
of linear equations [9]. Overall, since q is always much smaller than
n + l, MMM is dominated by the computation of the moments
in Eq. (7). When the LU decomposition of A is available, e.g. if
our proposed framework utilizes a direct solver for time domain
simulations, to compute each moment just need a pair of forward
and back substitutions, consuming similar running time as a single
time step in time domain simulations.

1We will discuss how to choose such q outputs in Section III-C.

(a) Actual noise

(b) Noise when currents are set to 0 after 1ns

(c) Noise when currents are set to 0 before 1ns
Fig. 1. Superposition of Noises: the noise in (a) is the summation of the
noises in (b) and (c)

III. THE MOR-ASSISTED TIME DOMAIN

SIMULATION FRAMEWORK

A. Motivation

We demonstrate the motivation of our proposed framework using
a node in the ground network from the power grid ibmpg2t in the
IBM power grid simulation benchmarks [12]. The actual noise at
the node from 0ns to 2ns as shown in Fig. 1 (a) is obtained by a
time domain simulation of 100 time steps using a time step of 10ps.
Moreover, we show the noise at the node when all the independent
current sources are set to 0 after 1ns in Fig. 1 (b), and the noise at
the node when all the the independent current sources are set to 0
before 1ns in Fig. 1 (c). Obviously, according to the superposition
property, the actual noise is the summation of the other two.

Since the noises in Fig. 1 (b) and (c) can be obtained indepen-
dently, it is intuitive to ask whether such problem decomposition
leads to efficient parallel and distributed implementations. However,
to obtain the noises in Fig. 1 (b) and (c) from time domain simulations
will not reduce the wall-clock time. Although to obtain Fig. 1 (c) will
require to simulate only half of the time steps since the noise from 0ns
to 1ns should be 0, to obtain Fig. 1 (b) will still require to simulate
100 time steps since the “tail” of the noise from 1ns to 2ns remains
significant (about 10mv to 20mv).

For practical power grids where any LC loop contains some
resistance, the tail of the noises should eventually approach 0 when
the independent current sources are set to 0. It is therefore possible
to reduce the wall-clock time if there is more time steps to simulate
than the time for the tail to become negligible. Nevertheless, it would
be more rewarding if one could estimate the tail directly without
performing any time domain simulations. Due to the low-pass nature
of power grids, the tail behavior is dominated by the poles of the
system whose magnitudes are small and whose associated residues,
as determined by the state of the system when the inputs become
0, are significant. Therefore, it is actually possible to obtain an
accurate estimation of the tail behavior leveraging MOR techniques

MOR-Assisted Time Domain Simulation
Inputs
T : desired simulation duration.
N : nodes whose noises are of interests.
p: number of available processor cores.
d: additional time domain simulation steps.
q: maximum order of the reduced order system.
Outputs

Noises for the nodes in N at each time step.
Stage 1: Split
1 Split T into p intervals T1,T2,. . .,Tp.
Stage 2: Map
2 For each Tj :
3 Obtain v(t) and i(t) during Tj by time domain simulation

using the actual currents.
4 Using v(t) and i(t) at the last time step of Tj as the initial

condition, simulate d additional time steps assuming all the
currents are 0.

5 Using v(t) and i(t) at the dth addtional time step, build a
reduced order system of order q for the tail of the noises.

6 For each node in N , output the noise for each time step
in Tj and of the d additional time steps, and output the
reduced model for its tail.

Stage 3: Reduce
7 For each x ∈ N :
8 Collect the outputs for x from all the tasks in the Map stage.
9 Evaluate the reduced order systems and accumulate the

actual noise at x for each time step.
Fig. 2. The Proposed MOR-Assisted Time Domain Simulation Framework

that are specifically designed to capture such behaviors. Moreover,
since we are only interested in the tail behavior when the inputs are
0, we circumvent the difficulties associated with the inputs for MOR
techniques when they are applied to circuit simulation problems.

B. The Proposed Framework

Our proposed MOR-Assisted Time Domain Simulation framework
is shown in Fig. 2. The framework contains three stages Split, Map,
and Reduce. The Split stage partitions the desired simulation duration
into p intervals that will be handled in the Map stage in parallel.
The Map stage includes p tasks, one each for the p intervals. Every
task will first apply time domain simulation to obtain a portion of
the nodal noises from the actual excitation during the interval, and
then apply MOR to estimate the tail of the noises. To allow responses
resulting from the poles whose magnitudes are large to die out further,
d additional time steps are simulated with zero excitation at the end
of each interval. At the end of the Map stage, the noises and the
reduced models are emitted as output for all the nodes in the set N
whose noises are of interests. The Reduce stage includes one task for
each node in N . In each task, the noises and the reduced models for
the node are first collected from the outputs of the Map stage, and
then evaluated and accumulated to obtain the actual noise.

Our decision to assign one but not more tasks to each processor
core in the Map stage is based on the intuition that less tasks will
incur less overhead since less reduced order systems are built, and
will lead to better accuracy since less tails are estimated. Therefore,
the Split stage is essential to balance the loads over multiple processor
cores. We believe that it is possible to achieve a good load balancing
in practice since the running time for time domain simulations and
MOR techniques can be estimated fairly well from the number of time

steps, and the capability of each processor core can be known a priori.
Note that such decision also differs our framework from the popular
MapReduce framework [4], though our framework may still benefit
from MapReduce implementations, e.g. for the communications that
distribute the outputs of the Map stage to the Reduce stage.

C. Implementation Details

We choose to perform the time domain simulations with a direct
sparse matrix solver. Each machine participating in the computation
will compute the LU decompositions for the matrices A and Ah as
required by Eq. (2) and (3). The results are then shared among its
processor cores. Computations in the Map stage for time domain
simulations are then dominated by the pairs of forward and back
substitutions.

We choose the multinode moment matching (MMM) technique as
discussed in Section II-B to build the reduced order systems. Since the
LU decomposition of A is available from time domain simulations,
the computations of the moments as outlined in Eq. (7) are also
dominated by the pairs of forward and back substitutions. For any
given q, to choose q outputs arbitrarily may result in the extracted
moment vectors m1, m2, . . ., mq being linearly dependent. Actually,
there is no guarantee that one can find q outputs for them to be linearly
independent – for example, if v(0) = 0 and i(0) = 0, then all the
moments are 0. We propose to address this concern by an algorithm
that find the maximum q′ ≤ q and a set of q′ outputs such that the
extracted moment vectors m1, m2, . . ., mq′ are linearly independent.
Our algorithm starts by forming a q× (n+l) matrix whose ith row is
the ith moment (αi, βi). We then perform a partial LU decomposition
on this matrix with column pivoting until either the q′ = qth row is
completed or the q′+ 1th row becomes all 0. The outputs are chosen
as the pivots. Note that in our algorithm, the LU decomposition of
(m1m2 · · ·mq′)T is computed at the same time. Therefore, we can
proceed to compute the matrix Γ according to Eq. (8) immediately.

Our current implementation assumes that all the machines have
the same number of processor cores and all the cores have the same
capability. Therefore, the Split stage will simply partition T into
intervals of equal length. Moveover, for simplicity, we implement
the Reduce stage without parallelizing its tasks. We found this stage
constributes to only a negligible amount of running time and such
sequential implementation is suffice.

D. Complexity Analysis

We provide an analysis of the complexity of our framework based
on the choices made in Section III-C. Details follow.

First of all, assume that the maximum number of fill-ins in both
the LU decompositions for the matrices A and Ah is m. Usually
m is larger than n + l but are much smaller (n + l)2 for sparse
systems. Let |T | and |N | be the number of time steps and the number
of nodes whose noises are of interests respectively. For the time
domain simulation based on a sequential direct solver that serves
as the baseline for comparison, the time complexity is O(m|T |) and
the space complexity is O(m + |N ||T |). Note that if the noises are
computed on distributed platforms, then O(|N ||T |) data need to be
communicated for the noises at |N | nodes for |T | time steps.

In our implementation of the proposed framework, each machine
requires an O(m) storage to store the LU decompositions. The Split
stage can be completed in O(p) time. In the Map stage, each task

will require at most O(m(|T |
p

+d)) time to perform the time domain
simulation and O(mq) time to compute the moments. The rest of the
MMM computation is dominated by the partial LU decomposition
that requires O(q2(n + l)) time and the residue calculations that
requires O(q3 + q2|N |) time. Thus the time complexity is O(q2(n+
l)) since |N | ≤ n+ l. In summary, each task in the Map stage has a
time complexity of O(m |T |

p
+m(d+ q) + q2(n+ l)) and a storage

complexity of O(|N | |T |
p

+ q(n + l)). At the end of the Map stage,
O(|T |+ pq) data need to be communicated for each node in N . In
the Reduce stage, each task has a time complexity of O(pq|T |) and
a space complexity of O(|T |+ pq).

Overall, the wall-clock time of our implementation is dominated
by the forward and back substitutions for the time domain simulation
and the moments computation in each task of the Map stage.
Therefore, in comparison to the baseline, we would expect an ideal
speed-up of

Speed-up(p) =
m|T |

m |T |
p

+m(d+ q)
= p

1

1 + d+q
|T |/p

. (9)

The overall storage overhead is O(pq(n + l)), dominated by the
need to store the moments and the residues at each processor core.
The overall communication overhead is O(pq|N |) as required for
all the residues. Note that our proposed framework needs only
two synchronizations, one each between the transition among two
consecutive stages, incurring much less overhead in comparison to
the time domain simulation via parallel direct and iterative solvers
where at least |T | synchronizations are necessary.

IV. EXPERIMENTAL RESULTS

We implement the proposed MOR-Assisted time domain simu-
lation framework in C++ combining the direct sparse matrix solver
NICSLU [2] and the MMM techique. Our framework utilizes multiple
processor cores on a single machine via POSIX Threads, and multiple
machines are coordinated via POSIX sockets. For simplicity, we did
not apply parallel LU decompositions and parallel forward and back
substitutions with the exception that the LU decompositions of A
and Ah are computed simultaneously on two processor cores of each
machine. For comparison, we implement a sequential time domain
simulation tool utilizing the NICSLU solver. Our code is built by
GCC version 4.1 and we run all the experiments on two identical
64-bit Linux servers with dual 2.67GHz Intel X5650 processor (12
processor cores total) and 64GB memory, interconnected on a gigabit
Ethernet.

Our experiments are based on the six the IBM power grid
simulation benchmarks [12] where every benchmark needs to be
simulated for 1000 time steps . For all the benchmarks in each task
of the Map stage, there will be d = 5 additional time steps and the
MMM technique will build a system with at most q = 20 poles, which
are suffice to capture the tail behaviors as validated by the results.
We experiment with multiple configurations of task assignments on
the available processor cores on the two servers. The results from
a few typical configurations are shown in Table I. In this table,
we show the wall-clock time in seconds to complete the 1000 time
steps (“t1000”) excluding LU decompositions, the overall wall-clock
time in seconds (“ttot”) including everything from reading the SPICE
netlist to writing the output, and the maximum/average errors in uV
to the golden solution (“Err.”). Both the wall-clock times and the
errors for the sequential time domain simulation are similar to those
reported by the winners of the recent TAU contest [19], [18], [17].

TABLE I. SPEED-UPS OF MOR-ASSISTED TIME DOMAIN SIMULATIONS OVER SEQUENTIAL SIMULATIONS

Sequential Simulation MOR-Assisted Time Domain Simulation Framework
1 Core 4 Cores 16 Cores

One Server Err. One Server Two Servers Err. Two Servers Err.
name t1000(s) ttot(s) (uV) t1000(s) ttot(s) t1000(s) ttot(s) (uV) t1000(s) ttot(s) (uV)
ibmpg1t 2.30 2.81 53/4 1.00 1.44 1.55 1.99 54/5 0.40 0.84 53/5
ibmpg2t 31.66 37.11 46/4 11.59 15.08 12.21 15.72 46/4 4.86 8.51 46/5
ibmpg3t 85.12 99.76 41/4 31.25 41.86 30.36 41.13 42/4 15.17 26.02 42/4
ibmpg4t 401.07 678.88 131/9 180.18 340.11 154.72 314.16 131/9 85.62 244.93 132/9
ibmpg5t 180.80 215.27 31/3 77.45 99.99 60.58 83.61 35/4 31.81 54.98 38/5
ibmpg6t 264.54 301.31 33/4 99.67 126.46 96.99 123.47 34/4 46.75 72.81 83/6
total 965.49 1335.14 401.14 624.92 356.41 580.07 184.60 408.07
ratio 1.00 1.00 2.41 X 2.14 X 2.71 X 2.30 X 5.23 X 3.27 X

Fig. 3. Speed-ups under Different Configurations

Our proposed framework is able to achieve more than 2X speed-ups
utilizing only 4 cores either on the same server or the two servers
without losing accuracy, which is comparable to the best speed-up
that can be achieved for those aforementioned TAU contest winners.
When 16 cores are used, 8 from each server, our proposed framework
is able to achieve more than 5X speed-ups to complete the 1000 time
steps. The speed-ups of the overall wall-clock times in such case are
limited to a little bit more than 3X due to the LU decompostions.
This may or may not be a concern for even larger power grids since
an iterative solver must be used where setting up a preconditioner
may consume far less time relatively than LU decompostions. Note
that when more cores are used on these two machines, we have not
observed further speed-ups, possibly because the ratio of the overhead
to the necessary simulation steps, roughly p

40
, increases considerably

in such cases.

It is important to point out that our framework actually performs
better with two servers than a single one for the same number of
cores. As shown in Fig. 3, the speed-ups on the distributed platform
are consistently better starting from 4 cores, though on both platforms
the speed-ups are far from the ideal one p 1

1+ p
40

as predicted in
Eq. (9). We believe that this is due to the fact that forward and back
substitutions will incur considerable overhead in memory traffic –
though all the tasks in the Map stage are independent of each other,
memory access contentions exist and cores have to wait until data
become available. The overhead is so large that it is more rewarding
to “pay” communication cost in order to “buy” memory bandwidth
from other machines. Note that although similar limitations have
been observed in [17], distributing forward and back substitutions to
multiple machines might not be rewarding since the communication
cost there is much larger than in our proposed framework.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we proposed the MOR-assisted time domain simu-
lation framework that combines time domain simulations and MOR
techniques for scalable power grid transient analysis. Experiments
showed that by utilizing a direct sparse matrix solver and the
multinode moment matching technique, more than 5X speed-up over
the sequential simulation were achieved to complete 1000 time steps
on 16 processor cores distributed over two servers for the IBM power

grid simulation benchmarks. The remaining questions we plan to
address in the future are that to what extent one can trust the output
when the golden is not available, that whether it is possible to improve
single machine performance by coordinating memory accesses, and
that how the framework can be adapted in a distributed environment
where machines with different capabilities exist.

REFERENCES

[1] T.-H. Chen and C. C.-P. Chen. Efficient large-scale power grid analysis based
on preconditioned Krylov-subspace iterative methods. In DAC, pages 559–562,
2001.

[2] X. Chen, W. Wu, Y. Wang, H. Yu, , and H. Yang. EScheduler-based data
dependence analysis and task scheduling for parallel circuit simulation. IEEE
Trans. Circuits and Systems II: Express Briefs, 58(10):702–706, Oct. 2011.

[3] K. Daloukas, N. Evmorfopoulos, G. Drasidis, M. Tsiampas, P. Tsompanopoulou,
and G. I. Stamoulis. Fast transform-based preconditioners for large-scale power
grid analysis on massively parallel architectures. In ICCAD, pages 384–391, 2012.

[4] J. Dean and S. Ghemawat. MapReduce: simplified data processing on large
clusters. CACM, 51(1):107–113, Jan. 2008.

[5] Z. Feng and P. Li. Multigrid on GPU: Tackling power grid analysis on parallel
SIMT platforms. In ICCAD, pages 647–654, 2008.

[6] Z. Feng, X. Zhao, and Z. Zeng. Robust parallel preconditioned power grid sim-
ulation on GPU with adaptive runtime performance modeling and optimization.
IEEE TCAD, 30(4):562–573, Apr. 2011.

[7] C.-W. Ho, A. Ruehli, and P. Brennan. The modified nodal approach to network
analysis. IEEE Transactions on Circuits and Systems, 22(6):504–509, June 1975.

[8] X. Hu, W. Zhao, P. Du, A. Shayan, and C.-K. Cheng. An adaptive parallel flow
for power distribution network simulation using discrete fourier transform. In
ASPDAC, pages 125–130, 2010.

[9] Y. I. Ismail. Improved model-order reduction by using spacial information in
moments. IEEE TVLSI, 11(5):900–908, Oct. 2003.

[10] Y.-M. Lee, Y. Cao, T.-H. Chen, J. Wang, and C.-P. Chen. HiPRIME: hierarchical
and passivity preserved interconnect macromodeling engine for RLKC power
delivery. IEEE TCAD, 24(6):797–806, June 2005.

[11] D. Li, S.-D. Tan, and B. McGaughy. ETBR: Extended truncated balanced
realization method for on-chip power grid network analysis. In DATE, pages
432–437, 2008.

[12] Z. Li, R. Balasubramanian, F. Liu, and S. Nassif. 2012 TAU power grid simulation
contest: benchmark suite and results. In ICCAD, pages 643–646, 2012.

[13] L. T. Pillage and R. A. Rohrer. Asymptotic waveform evaluation for timing
analysis. IEEE TCAD, 9(4):352–366, Apr. 1990.

[14] K. Sun, Q. Zhou, K. Mohanram, and D. C. Sorensen. Parallel domain decompo-
sition for simulation of large-scale power grids. In ICCAD, pages 54–59, 2007.

[15] J. Wang and T. Nguyen. Extended Krylov subspace method for reduced order
analysis of linear circuits with multiple sources. In DAC, pages 247–252, 2000.

[16] S.-H. Weng, Q. Chen, N. Wong, and C.-K. Cheng. Circuit simulation via matrix
exponential method for stiffness handling and parallel processing. In ICCAD,
pages 407–414, 2012.

[17] X. Xiong and J. Wang. Parallel forward and back substitution for efficient power
grid simulation. In ICCAD, pages 660–663, 2012.

[18] J. Yang, Z. Li, Y. Cai, and Q. Zhou. PowerRush: efficient transient simulation
for power grid analysis. In ICCAD, pages 653–659, 2012.

[19] T. Yu and M. D. F. Wong. PGT SOLVER: an efficient solver for power grid
transient analysis. In ICCAD, pages 647–652, 2012.

[20] T. Yu, Z. Xiao, and M. D. F. Wong. Efficient parallel power grid analysis via
additive schwarz method. In ICCAD, pages 399–406, 2012.

[21] M. Zhao, R. Panda, S. Sapatnekar, and D. Blaauw. Hierarchical analysis of power
distribution networks. IEEE TCAD, 21(2):159–168, Feb. 2002.

[22] S. Zhao, K. Roy, and C.-K. Koh. Frequency domain analysis of switching noise
on power supply network. In ICCAD, pages 487–492, 2000.

