ECE 587 – Hardware/Software Co-Design Lecture 21 Large Language Models

Professor Jia Wang Department of Electrical and Computer Engineering Illinois Institute of Technology

April 2, 2025

Large Language Models

Llama Models

This lecture: Large Language Models

- Attention Is All You Need, Vaswani et al. https://arxiv.org/abs/1706.03762
- Llama https://github.com/meta-llama/llama-models
- We will study state-of-the-art hardware accelerators and interconnection networks for the rest of the semester.

Large Language Models

Llama Models

Language Models Overview

- Tokenization: convert text into sequences of tokens
- Embedding: represent tokens as vectors
- Encoder C' = E(C, x): input one token at a time
- ▶ Decoder (Pr, C') = D(C): output probability of next token
- Autoregression: $(Pr, C') = D(C, x^{-1}, x^{-2}, \dots, x^{-N})$

Make use of previously generated output tokens.

- Challenges
 - How can we design encoders and decoders as neural networks?
 - How to define loss functions to train models?
 - How to obtain data for training?

Decoder-only Models

$$Pr_{N+1} = D(x_1, x_2, \dots, x_N)$$

- When the window size N is large enough, the whole input sequence can be included as if they are generated first.
 - Let's rename the symbols to be consistent with literatures.
- Introduce special tokens to indicate end of input.
 - Prompt the decoder to generate actual output tokens.
- No need to use encoder and context any more.
 - Context, similar to state in a FSM, makes it difficult to parallelize the computations, in particular for training where a lot of data need to be consumed efficiently.

Considerations for Training

$$(Pr_2, Pr_3, \dots, Pr_{N+1}) = D(x_1, x_2, \dots, x_N)$$

▶ The decoder model actually predict probability Pr_2 , Pr_3 , ... for known tokens $x_2, x_3, ...$ in addition to the next token.

A model architecture matching lengths of input and output.

- A loss function can be defined between actual tokens (x_2, \ldots, x_{N+1}) and predictions (Pr_2, \ldots, Pr_{N+1}) .
 - Masking: ensure that probabilites are only computed from previous tokens, like how we read a sentence word by word.
 - For example, Pr_2 should only depend on x_1 , and Pr_N should only depend on (x_1, \ldots, x_{N-1}) but not x_N .
- Learn D from vast amount of text via unsupervised learning, without the need to label data by human beings.
- How to build neural networks for D?

Attention: Query

8/18

- Attention: a neural network layer that allows to extract data from a sequence of arbitrary length.
- Query q: a vector representing a pattern of interests.
 - Assume q to have the same size as x_i, i.e. both are d × 1 vectors. Then the inner product q^Tx_i is a scalar representing how similar q and x_i are.

• Use inner products to score tokens: $(q^T x_1, q^T x_2, \dots, q^T x_N)$

- Token with higher score will contribute more to extracted data.
- Use softmax to calculate weights for each token and extracted data as a weighted summation of all tokens.

• Attention with query: softmax $(q^T X^T) X$

- X is a matrix with N rows x_1^T, \ldots, x_N^T , and d columns.
- $q^T X^T$ gives a $1 \times N$ row vector and so does softmax.
- ▶ softmax(q^TX^T)X extracts a 1 × d row vector from the input sequence of arbitrary length with the given query q.

Attention: Keys and Values

What if we would like to have more flexibility so both query and output could have a different size?

• Keys: $K = XW^K$ where W^K are the weights

- Query with the key instead of the tokens.
- Assume W^K is a $d \times d_k$ matrix.
- $K = XW^K$ is a $N \times d_k$ matrix.
- The scores and weights become $softmax(q^T K^T)$
 - q will have a matching size of $d_k \times 1$.
 - $q^T \mathbf{K}^T$ gives a $1 \times N$ row vector and so does softmax.

▶ Values: $V = XW^V$ where W^V are the weights

- Extract data as weighted summation of value instead of tokens.
- Assume W^V is a $d \times d_v$ matrix.
- $V = XW^V$ is a $N \times d_v$ matrix.

• Attention: softmax $(q^T K^T) V$, a $1 \times d_v$ row vector

Self-Attention

Is it possible to use multiple queries and how to obtain them? Yes and we can obtain them from the input sequence itself. • Queries: $Q = XW^Q$ where W^Q are the weights Query the input sequence with itself. • W^Q is a $d \times d_k$ matrix and $Q = XW^Q$ is a $N \times d_k$ matrix. Each row of Q is a query and there are N queries. \triangleright **QK**^T computes scores between the N queries and N keys. Each row contains scores for a single query with all keys. We can apply softmax row by row to obtain weights. ▶ Self-Attention: softmax $(\frac{QK^T}{\sqrt{d_v}})V$, a $N \times d_v$ matrix. • QK^T is scaled by $\sqrt{d_k}$ as its elements get larger when each query and key becomes longer. \blacktriangleright Learn all the weights $W^Q W^K W^V$ during training.

Masking

$$\mathsf{Self-Attention}(\boldsymbol{X}) = \mathsf{softmax}(\frac{\boldsymbol{Q}\boldsymbol{K}^T}{\sqrt{d_k}})\boldsymbol{V}$$

- Self-Attention(X) outputs a N × d_v matrix, which can be treated as an output sequence with the same length as X.
 - QK^T is a $N \times N$ matrix.
 - An element at *i*th row and *j*th column of *QK^T* controls how the input *j* contributes to the output *i*.
- For masking, output *i* should only depends on input $1, \ldots, i$.
 - Set elements in QK^T with i < j to $-\infty$ before softmax.
- For inference, masking enables the use of KV cache so that one can compute Pr_{N+1} efficiently for the next token.
 - ▶ No need to recalculate Pr_2, \ldots, Pr_N for previous tokens.

Multi-Head Attention

 $\mathsf{head}_i = \mathsf{Self}\mathsf{-}\mathsf{Attention}_i(\boldsymbol{X})$ $\mathsf{MultiHead}(\boldsymbol{X}) = \mathsf{Concat}(\mathsf{head}_1, \dots, \mathsf{head}_h)\boldsymbol{W}^O$

- Learn multiple (h) sets of $(\mathbf{W}^Q, \mathbf{W}^K, \mathbf{W}^V)$
- Each generate a N × d_v matrix as output using self-attention.
- Concatenate the outputs into a $N \times hd_v$ matrix.
- Learn the matrix W^O of size hd_v × d as the output weights so the overall output has the same size N × d as the input.
- Multi-head attention provide a lot of opportunities for parallelization.
- When input and output are of the same size, we can stack many of the same layers for a deeper and larger model.

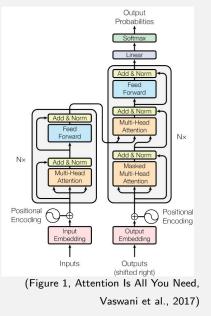
$$oldsymbol{Q} = oldsymbol{X}oldsymbol{W}^Q, oldsymbol{K} = oldsymbol{X}oldsymbol{W}^K, oldsymbol{V} = oldsymbol{X}oldsymbol{W}^V, ext{softmax}(rac{oldsymbol{Q}oldsymbol{K}^T}{\sqrt{d_k}})oldsymbol{V}$$

- Reorder the input sequence results in reordering rows of X.
- Rows of Q, K, V will be reordered the same way.
 - Though their values remain same.
- QK^T will be reordered in a way such that the output of softmax is only a reordering of the original one.
- Not correct since words mean differently at different locations
 E.g. "You own me \$100" and "I own you \$100".
- Choose a sequence of vectors to represent the N positions and add them to X, or to Q and K.
- While attention can handle arbitrary sequence lengths, the need to maintain positional information makes it difficult to use a different sequence length than that used for training.

 $\mathsf{MultiHead}(\boldsymbol{X}) = \mathsf{Concat}(\mathsf{head}_1, \dots, \mathsf{head}_h) \boldsymbol{W}^O$

- The output of MultiHead(X) as a N × d matrix can be viewed as a sequence of N row vectors.
- Introduce additional non-linearity and capacity by transforming individual output vectors identically.
- Make use of multiple fully connected (MLP) layers, e.g. $FFN(\boldsymbol{y}) = ReLU(\boldsymbol{y}\boldsymbol{W}_1 + \boldsymbol{b}_1)\boldsymbol{W}_2 + \boldsymbol{b}_2$
 - \blacktriangleright y is a row vector from the output of multi-head attention.
 - Learn weights and bias's W₁, b₁, W₂, b₂ during training.
 - The same set of W_1 , b_1 , W_2 , b_2 are used for all rows.

Transformer



- The original transformer model contains both encoder and decoder.
- Stack of FFN and attention layers.
 - With layer normalizations and residual connections.
- Probabilites are generated at each output position identically.
 - First, a linear layer transform the output vector of size d into a vector of size M.
 - Then, apply softmax to obtain the probabilities at this position.
- Remove encoder related parts to obtain a decoder-only transformer.

Outline

Large Language Models

Llama Models

Llama Models

Llama (Large Language Model Meta AI)

- Open and efficient foundation language models
- Llama 2 (2023): up to 70B parameters with window size N = 4096
- Various Llama 3 versions (2024): up to 405B parameters with window size N = 128k
- A decoder-only (autoregressive) transformer model.
 - Reference implementation for inference is provided in PyTorch.
 - Trained models (weights) are available for download after signing an agreement with Meta.
 - A lot of open-source implementations to support quantization, efficient CPU inference, fine tuning, etc.

Example: LLaMA-2 13B

- Tokenization: M = 32000 different tokens.
- Embedding: each token vector has a size of d = 5120.
 - ▶ $32000 * 5120 \approx 160M$ parameters for embedding.
- 40 layers of FFN and attention
 - Each attention layer has h = 40 heads and $d_k = d_v = \frac{5120}{40} = 128$.
 - W^Q , W^K , W^V have the same size $5120 * 128 \approx 650K$.
 - W^O has a size of $5120 * 5120 \approx 26M$.
 - All 40 sets W^Q , W^K , W^V , plus W^O , have $650K * 3 * 40 + 26M \approx 104M$ parameters.
 - Each FFN has two fully-connected layers that map a vector of size 5120 to size 13824 and then back to size 5120.
 - Three 13824 * 5120 matrices with 212M parameters: one each for the two layers, and one additional for gated activation.

• $(104M + 212M) * 40 \approx 12.6B$ parameters for 40 layers.

- ▶ Output linear layer: $32000 * 5120 \approx 160M$ parameters
- All together: $160M + 12.6B + 160M \approx 13B$ parameters.