
ECE 587 – Hardware/Software Co-Design
Lecture 21 Large Language Models

Professor Jia Wang
Department of Electrical and Computer Engineering

Illinois Institute of Technology

April 2, 2025

1/18 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT

Outline

Large Language Models

Llama Models

2/18 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT

Reading Assignment

▶ This lecture: Large Language Models
▶ Attention Is All You Need, Vaswani et al.

https://arxiv.org/abs/1706.03762
▶ Llama https://github.com/meta-llama/llama-models

▶ We will study state-of-the-art hardware accelerators and
interconnection networks for the rest of the semester.

3/18 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT

https://arxiv.org/abs/1706.03762
https://github.com/meta-llama/llama-models

Outline

Large Language Models

Llama Models

4/18 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT

Language Models Overview

▶ Tokenization: convert text into sequences of tokens

▶ Embedding: represent tokens as vectors

▶ Encoder C ′ = E(C, x): input one token at a time

▶ Decoder (Pr,C ′) = D(C): output probability of next token

▶ Autoregression: (Pr,C ′) = D(C, x−1, x−2, . . . , x−N)
▶ Make use of previously generated output tokens.

▶ Challenges
▶ How can we design encoders and decoders as neural networks?
▶ How to define loss functions to train models?
▶ How to obtain data for training?

5/18 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT

Decoder-only Models

PrN+1 = D(x1, x2, . . . , xN)

▶ When the window size N is large enough, the whole input
sequence can be included as if they are generated first.
▶ Let’s rename the symbols to be consistent with literatures.

▶ Introduce special tokens to indicate end of input.
▶ Prompt the decoder to generate actual output tokens.

▶ No need to use encoder and context any more.
▶ Context, similar to state in a FSM, makes it difficult to

parallelize the computations, in particular for training where a
lot of data need to be consumed efficiently.

6/18 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT

Considerations for Training

(Pr2, P r3, . . . , P rN+1) = D(x1, x2, . . . , xN)

▶ The decoder model actually predict probability Pr2, Pr3, . . .
for known tokens x2,x3,. . . in addition to the next token.
▶ A model architecture matching lengths of input and output.

▶ A loss function can be defined between actual tokens
(x2, . . . , xN+1) and predictions (Pr2, . . . , P rN+1).
▶ Masking: ensure that probabilites are only computed from

previous tokens, like how we read a sentence word by word.
▶ For example, Pr2 should only depend on x1, and PrN should

only depend on (x1, . . . , xN−1) but not xN .

▶ Learn D from vast amount of text via unsupervised learning,
without the need to label data by human beings.

▶ How to build neural networks for D?

7/18 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT

Attention: Query

▶ Attention: a neural network layer that allows to extract data
from a sequence of arbitrary length.

▶ Query q: a vector representing a pattern of interests.
▶ Assume q to have the same size as xi, i.e. both are d× 1

vectors. Then the inner product qTxi is a scalar representing
how similar q and xi are.

▶ Use inner products to score tokens: (qTx1, q
Tx2, . . . , q

TxN)
▶ Token with higher score will contribute more to extracted data.
▶ Use softmax to calculate weights for each token and extracted

data as a weighted summation of all tokens.

▶ Attention with query: softmax(qTXT)X
▶ X is a matrix with N rows xT

1 , . . . , x
T
N , and d columns.

▶ qTXT gives a 1×N row vector and so does softmax.
▶ softmax(qTXT)X extracts a 1× d row vector from the input

sequence of arbitrary length with the given query q.

8/18 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT

Attention: Keys and Values

▶ What if we would like to have more flexibility so both query
and output could have a different size?

▶ Keys: K = XWK where WK are the weights
▶ Query with the key instead of the tokens.
▶ Assume WK is a d× dk matrix.
▶ K = XWK is a N × dk matrix.

▶ The scores and weights become softmax(qTKT)
▶ q will have a matching size of dk × 1.
▶ qTKT gives a 1×N row vector and so does softmax.

▶ Values: V = XW V where W V are the weights
▶ Extract data as weighted summation of value instead of tokens.
▶ Assume W V is a d× dv matrix.
▶ V = XW V is a N × dv matrix.

▶ Attention: softmax(qTKT)V , a 1× dv row vector

9/18 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT

Self-Attention

▶ Is it possible to use multiple queries and how to obtain them?
▶ Yes and we can obtain them from the input sequence itself.

▶ Queries: Q = XWQ where WQ are the weights
▶ Query the input sequence with itself.
▶ WQ is a d× dk matrix and Q = XWQ is a N × dk matrix.
▶ Each row of Q is a query and there are N queries.

▶ QKT computes scores between the N queries and N keys.
▶ Each row contains scores for a single query with all keys.
▶ We can apply softmax row by row to obtain weights.

▶ Self-Attention: softmax(QKT
√
dk

)V , a N × dv matrix.

▶ QKT is scaled by
√
dk as its elements get larger when each

query and key becomes longer.
▶ Learn all the weights WQ,WK ,W V during training.

10/18 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT

Masking

Self-Attention(X) = softmax(
QKT

√
dk

)V

▶ Self-Attention(X) outputs a N × dv matrix, which can be
treated as an output sequence with the same length as X.
▶ QKT is a N ×N matrix.
▶ An element at ith row and jth column of QKT controls how

the input j contributes to the output i.

▶ For masking, output i should only depends on input 1, . . . , i.
▶ Set elements in QKT with i < j to −∞ before softmax.

▶ For inference, masking enables the use of KV cache so that
one can compute PrN+1 efficiently for the next token.
▶ No need to recalculate Pr2, . . . , P rN for previous tokens.

11/18 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT

Multi-Head Attention

headi = Self-Attentioni(X)

MultiHead(X) = Concat(head1, . . . , headh)W
O

▶ Learn multiple (h) sets of (WQ,WK ,W V)

▶ Each generate a N × dv matrix as output using self-attention.

▶ Concatenate the outputs into a N × hdv matrix.

▶ Learn the matrix WO of size hdv × d as the output weights
so the overall output has the same size N × d as the input.

▶ Multi-head attention provide a lot of opportunities for
parallelization.

▶ When input and output are of the same size, we can stack
many of the same layers for a deeper and larger model.

12/18 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT

Positional Encoding

Q = XWQ,K = XWK ,V = XW V , softmax(
QKT

√
dk

)V

▶ Reorder the input sequence results in reordering rows of X.
▶ Rows of Q, K, V will be reordered the same way.

▶ Though their values remain same.

▶ QKT will be reordered in a way such that the output of
softmax is only a reordering of the original one.

▶ Not correct since words mean differently at different locations
▶ E.g. “You own me $100” and “I own you $100”.

▶ Choose a sequence of vectors to represent the N positions
and add them to X, or to Q and K.

▶ While attention can handle arbitrary sequence lengths, the
need to maintain positional information makes it difficult to
use a different sequence length than that used for training.

13/18 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT

Position-wise Feed-Forward Networks (FFN)

MultiHead(X) = Concat(head1, . . . , headh)W
O

▶ The output of MultiHead(X) as a N × d matrix can be
viewed as a sequence of N row vectors.

▶ Introduce additional non-linearity and capacity by
transforming individual output vectors identically.

▶ Make use of multiple fully connected (MLP) layers, e.g.
FFN(y) = ReLU(yW1 + b1)W2 + b2

▶ y is a row vector from the output of multi-head attention.
▶ Learn weights and bias’s W1, b1, W2, b2 during training.
▶ The same set of W1, b1, W2, b2 are used for all rows.

14/18 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT

Transformer

(Figure 1, Attention Is All You Need,

Vaswani et al., 2017)

▶ The original transformer model
contains both encoder and decoder.

▶ Stack of FFN and attention layers.
▶ With layer normalizations and

residual connections.

▶ Probabilites are generated at each
output position identically.
▶ First, a linear layer transform the

output vector of size d into a
vector of size M .

▶ Then, apply softmax to obtain
the probabilities at this position.

▶ Remove encoder related parts to
obtain a decoder-only transformer.

15/18 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT

Outline

Large Language Models

Llama Models

16/18 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT

Llama Models

▶ Llama (Large Language Model Meta AI)
▶ Open and efficient foundation language models
▶ Llama 2 (2023): up to 70B parameters with window size

N = 4096
▶ Various Llama 3 versions (2024): up to 405B parameters with

window size N = 128k

▶ A decoder-only (autoregressive) transformer model.
▶ Reference implementation for inference is provided in PyTorch.
▶ Trained models (weights) are available for download after

signing an agreement with Meta.
▶ A lot of open-source implementations to support quantization,

efficient CPU inference, fine tuning, etc.

17/18 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT

Example: LLaMA-2 13B

▶ Tokenization: M = 32000 different tokens.
▶ Embedding: each token vector has a size of d = 5120.

▶ 32000 ∗ 5120 ≈ 160M parameters for embedding.

▶ 40 layers of FFN and attention
▶ Each attention layer has h = 40 heads and dk=dv=

5120
40 =128.

▶ WQ, WK , W V have the same size 5120 ∗ 128 ≈ 650K.
▶ WO has a size of 5120 ∗ 5120 ≈ 26M .
▶ All 40 sets WQ, WK , W V , plus WO, have

650K ∗ 3 ∗ 40 + 26M ≈ 104M parameters.

▶ Each FFN has two fully-connected layers that map a vector of
size 5120 to size 13824 and then back to size 5120.

▶ Three 13824 ∗ 5120 matrices with 212M parameters: one each
for the two layers, and one additional for gated activation.

▶ (104M + 212M) ∗ 40 ≈ 12.6B parameters for 40 layers.

▶ Output linear layer: 32000 ∗ 5120 ≈ 160M parameters

▶ All together: 160M + 12.6B + 160M ≈ 13B parameters.

18/18 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT

	Large Language Models
	Llama Models

