
ECE 587 – Hardware/Software Co-Design
Lecture 20 Quantization

Professor Jia Wang
Department of Electrical and Computer Engineering

Illinois Institute of Technology

March 31, 2025

1/20 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Outline

Quantization

Language Models

2/20 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Reading Assignment

▶ This lecture: Quantization
▶ Quantization and Training of Neural Networks for Efficient

Integer-Arithmetic-Only Inference, Jacob et al.
https://arxiv.org/abs/1712.05877

▶ Next lecture: Large Language Models

3/20 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT

https://arxiv.org/abs/1712.05877


Outline

Quantization

Language Models

4/20 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Neural Network Model Overview

▶ A neural network model consists of many layers.
▶ Inference: generate output from input data, usually

▶ A layer uses activations (output) from the previous layer as its
input, and computes its activations for the next layer.

▶ Within the layer, the input is multiplied with a weight matrix,
then a bias vector is added, and finally the result is passed
through nonlinear functions like pooling and activation to
obtain outputs.

▶ Training: learn parameters from existing data.
▶ Parameters include weight matrices, bias’s, etc.
▶ Via backpropagation, involving mostly matrix multiplications.

▶ Parameter sizes matter for both storage and computation.

5/20 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Growing Complexity

▶ AlexNet (2012): 60M (million) parameteres

▶ VGG Net (2014): around 140M parameters
▶ GPT (Generative Pre-trained Transformer)

▶ GPT-1 (2018): 117M parameteres
▶ GPT-2 (2019): 1.5B (billion) parameters
▶ GPT-3 (2020): up to 175B parameters

▶ Llama (Large Language Model Meta AI)
▶ Llama and Llama 2 (2023): up to 70B parameters
▶ Various Llama 3 versions (2024): up to 405B parameters

▶ DeepSeek V3 (2024) and R1 (2025): 671B parameters
▶ Is it possible to deploy these models for inference only?

▶ To edge devices with limited computational power, memory,
storage, and power availability?

▶ Trade-off accuracy for latency and cost in general.

6/20 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Quantization

▶ Usually, parameters and activations are represented by 32-bit
floating point numbers during training.

▶ Inference with lower bit-depth representations.
▶ A 8-bit representation leads to a saving of 4X in storage of

weight parameters, and 4X savings in memory for parameters
and activations.

▶ Representations can be specifically designed to use adders only,
eliminating the need of multipliers.

▶ Challenges: efficiency on commodity hardware without
substantial accuracy degradation.
▶ Multipliers should be used when they are available.

7/20 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Quantization Scheme

▶ Use 8-bit and 32-bit integers for parameters and activations.
▶ 8-bit for weights and activations.
▶ 32-bit for bias vectors.

▶ Compute with integer-only arithmatic operations.
▶ Without the need to make any conversion or table lookup.

▶ Uniform quantization
▶ There exists an affine mapping between the floating point

representation r and the integer representation q.
r = S(q − Z)

8/20 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Quantization Parameters

r = S(q − Z)

▶ S and Z are quantization parameters.
▶ Z: same type as q, representing floating point 0.
▶ S: same type as r, representing scale to convert from q to r.

▶ Use a single pair of (S,Z) for a set of values
▶ A weight matrix, a bias vector, an activation vector, etc.
▶ Different matrices or vectors may use different pairs of (S,Z)’s.

9/20 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Scalar Multiplications

r1 = S1(q1 − Z1), r2 = S2(q2 − Z2), r3 = S3(q3 − Z3)

▶ If r3 = r1r2, how to compute q3 from q2 and q1?
▶ Directly without the need to compute r1 and r2 first.

▶ From S3(q3 − Z3) = r3 = r1r2 = S1S2(q1 − Z1)(q2 − Z2),
▶ q3 = Z3 +M(q1 − Z1)(q2 − Z2) where M = S1S2

S3

▶ M can be computed offline as 2−nM0 where M0 is a fixed
point number in [0.5, 1).

▶ All operations are integer ones!

10/20 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Matrix Multiplications

r
(i,k)
3 =

N∑
j=1

r
(i,j)
1 r

(j,k)
2

S3(q
(i,k)
3 − Z3) =

N∑
j=1

S1S2(q
(i,j)
1 − Z1)(q

(j,k)
2 − Z2)

▶ Let r
(i,j)
1 , r

(j,k)
2 , r

(i,k)
3 be elements from the three matrices.

▶ All elements for one matrix share the same S and Z.
▶ q

(i,k)
3 = Z3 +M

∑N
j=1(q

(i,j)
1 − Z1)(q

(j,k)
2 − Z2)

▶ M = S1S2

S3
can be computed offline as the previous slide.

▶ All operations are integer ones!

11/20 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Implemention Details

q
(i,k)
3 = Z3 +M

∑N
j=1(q

(i,j)
1 − Z1)(q

(j,k)
2 − Z2)

▶ To obtain accurate results, q
(i,j)
1 − Z1 and q

(j,k)
2 − Z2 may

require one more bit than that of q’s – not convenient.

▶ For neural network layers, bias is added as Sbias
S3

(qbias −Zbias)
▶ Since bias vectors are 32-bit, choose Zbias = 0 and

Sbias = S1S2 for simplicity without losing accuracy.

▶ Expand the above equation to have,

q
(i,k)
3 = Z3 +M(NZ1Z2 + qbias +

∑N
j=1 q

(i,j)
1 q

(j,k)
2

−Z1
∑N

j=1 q
(j,k)
2 − Z2

∑N
j=1 q

(i,j)
1 )

▶
∑N

j=1 q
(i,j)
1 q

(j,k)
2 can be computed as matrix multiplication

with 8-bit multipliers and 32-bit accumulators.
▶ The rest are computed with 32-bit multipliers and

accumulators – not a concern for efficiency since there will be
far more operations in the above matrix multiplication.

▶ Down-scale the result to 8-bit for q
(i,k)
3 with saturation.

12/20 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Post-Training Quantization

▶ How to obtain quantization parameters and quantized weight
matrices and bias vectors?

▶ Post-training quantization
▶ Complete training in floating point numbers
▶ For each weight matrix or activation vector, choose a good

pair of (S,Z), typically from the range of the values.

▶ Empirically, post-training quantization works well for large
models because there is certain level of redundancy.

▶ Small models may see significant accuracy drop due to
outliers that effective narrow down the range.

13/20 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Training with Simulated Quantization

▶ Learn quantization parameters in training.
▶ Instead of learning (S,Z) directly, learn two parameters (a, b)

for each weight matrix and activation vector.
▶ As mentioned before, (S,Z)’s for bias vectors are derived from

those of weights and activations instead of being learnt.

▶ During the training process, clamp the values into range [a, b]
and then quantize them according to the bit width.

▶ Intuitively, simulated quantization introduces noise into the
training process that the model learns to compensate.
▶ So the model will continue to work accurately for inference

when quantization introduces the same kind of noise.

14/20 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Outline

Quantization

Language Models

15/20 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Natural Language Processing (NLP)

▶ Use natural language as interface between computers and
human beings.

▶ Applications
▶ Voice command
▶ Machine translation
▶ Text summarization
▶ Image and video captioning
▶ Question answering
▶ Story, image, and video generation
▶ Many more to come

▶ Turing test: what is intelligence?

16/20 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Tokenization

▶ Convert texts in natural language into tokens that may have
meanings to facilitate further processing.

▶ Character-based tokenization
▶ Simple and effective to digitalize texts, e.g. ASCII and Unicode
▶ Need extra effort when characters don’t carry meanings by

themselves, e.g. English.

▶ Word-based tokenization
▶ Encode individual words and punctuations using a vocabulary.
▶ How to handle out-of-vocabulary and misspelled words?
▶ A very difficult task by itself for languages without word

separators, e.g. Chinese.

▶ Subword tokenization
▶ Learn common patterns from character sequences as subword

that usually carry meanings and fall back to characters.
▶ Handle rare, new, or misspelled words by breaking them into

known subword (and characters).

17/20 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Embedding

▶ If there are M different tokens, a token can be represented as
a M × 1 vector via one-hot encoding.
▶ One element is 1 while the rest are 0.

▶ However, one-hot encoding doesn’t capture any meanings.
▶ Embedding: represent tokens as vectors (usually shorter) to

capture semantic relationships and similarities.
▶ Tokens are then points in the embedding space.
▶ Tokens with similar meanings like ‘I’ and ’me’ are mapped to

points that are close in a subspace.

▶ Assume each vector is of the size d× 1, embedding is learnt
during the training process as a d×M matrix.

▶ For now on, we will not distinguish between the token and its
vector after embedding.

18/20 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Encoder-Decoder Models

▶ Most NLP tasks can be formulated as to generate an output
sequence of tokens from an input sequence of tokens.

▶ Since both input and output sequences can have arbitrary
lengths, two models are introduced for the NLP task.
▶ Encoder C ′ = E(C, x): process the input sequence of arbitrary

length by consuming one token x at a time and transforming
the context vector C of fixed size into the next one C ′.

▶ Decoder (x,C ′) = D(C): generate the output sequence one
token at a time by computing a token x from the context
vector C and transforming C into the next one C ′.

▶ Intuitively, both encoder E and decoder D are FSMs.

19/20 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Autoregression

▶ Decoder needs to be statistical: (Pr,C ′) = D(C)
▶ Have to learn from natural languages, which are ambiguous

and have a lot of variability.
▶ Instead of the actual token x, decoder computes Pr as the

vector of the probability of each token to be the output.
▶ A sampling process then samples Pr to obtain x.
▶ But then C ′ has no knowledge of x – how could the decoder

ensure the whole output sequence to be coherent?

▶ Autoregression: (Pr,C ′) = D(C, x−1, x−2, . . . , x−N )
▶ The decoder takes a window of N previously generated output

tokens as additional inputs to make better predictions.

▶ Challenges
▶ How can we design encoders and decoders as neural networks?
▶ How to define loss functions to train models?
▶ How to obtain data for training?

20/20 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT


	Quantization
	Language Models

