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Reading Assignment

» This lecture: Quantization

» Quantization and Training of Neural Networks for Efficient
Integer-Arithmetic-Only Inference, Jacob et al.
https://arxiv.org/abs/1712.05877

> Next lecture: Large Language Models
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Neural Network Model Overview

» A neural network model consists of many layers.
» Inference: generate output from input data, usually

> A layer uses activations (output) from the previous layer as its
input, and computes its activations for the next layer.

» Within the layer, the input is multiplied with a weight matrix,
then a bias vector is added, and finally the result is passed
through nonlinear functions like pooling and activation to
obtain outputs.

» Training: learn parameters from existing data.

» Parameters include weight matrices, bias's, etc.
» Via backpropagation, involving mostly matrix multiplications.

» Parameter sizes matter for both storage and computation.
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Growing Complexity
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AlexNet (2012): 60M (million) parameteres

VGG Net (2014): around 140M parameters
GPT (Generative Pre-trained Transformer)
> GPT-1 (2018): 117M parameteres
> GPT-2 (2019): 1.5B (billion) parameters
» GPT-3 (2020): up to 175B parameters
Llama (Large Language Model Meta Al)
» Llama and Llama 2 (2023): up to 70B parameters
» Various Llama 3 versions (2024): up to 405B parameters

DeepSeek V3 (2024) and R1 (2025): 671B parameters
Is it possible to deploy these models for inference only?

» To edge devices with limited computational power, memory,
storage, and power availability?
» Trade-off accuracy for latency and cost in general.
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Quantization

» Usually, parameters and activations are represented by 32-bit
floating point numbers during training.
» Inference with lower bit-depth representations.

» A 8-bit representation leads to a saving of 4X in storage of
weight parameters, and 4X savings in memory for parameters
and activations.

» Representations can be specifically designed to use adders only,
eliminating the need of multipliers.

» Challenges: efficiency on commodity hardware without
substantial accuracy degradation.

» Multipliers should be used when they are available.
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Quantization Scheme

» Use 8-bit and 32-bit integers for parameters and activations.

» 8-bit for weights and activations.
» 32-bit for bias vectors.

» Compute with integer-only arithmatic operations.
» Without the need to make any conversion or table lookup.
» Uniform quantization

» There exists an affine mapping between the floating point
representation r and the integer representation gq.
r==5(q-2)
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Quantization Parameters

r==5S(q—2)

» S and Z are quantization parameters.

» 7. same type as ¢, representing floating point 0.
» S: same type as r, representing scale to convert from ¢ to r.

» Use a single pair of (.9, Z) for a set of values

» A weight matrix, a bias vector, an activation vector, etc.
» Different matrices or vectors may use different pairs of (S, Z)'s.
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Scalar Multiplications

r = S1(q1 — Z1),1m2 = S2(q2 — Z2), 13 = S3(q3 — Z3)

» If r3 = rir9, how to compute g3 from ¢o and ¢;7
» Directly without the need to compute 1 and 75 first.
» From S3(q3 — Z3) = r3 =112 = S182(q1 — Z1)(q2 — Z2),
> g3 =Z3 + M(q1 — Z1)(g2 — Zo) where M = 5132
» M can be computed offline as 27" M, where M is a fixed
point number in [0.5,1).

» All operations are integer ones!
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Matrix Multiplications

I
M) =

<.
I
2,

N
Salas™ = Zg) = 3 S1Salat™” = Z1)(a5™ — 22)

> Let r?’” g k) (Z ") be elements from the three matrices.

» All elements for one matrix share the same S and Z.
ik , ik
(Z ) Z +MZJ 1(Q§Z]) Zl)( (J )_22)
> M= 5152 can be computed offline as the previous slide.

> All operatlons are integer ones!
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Implemention Details

a5 = 25+ MY (0" - 20)(a5™ - 22)

» To obtain accurate results, qgi’j) — 7 and qé k) _ Z2 may

require one more bit than that of ¢'s — not convenient.
» For neural network layers, bias is added as S%;”(qus — Zbias)
» Since bias vectors are 32-bit, choose Z;;,; = 0 and
Shias = S1.92 for simplicity without losing accuracy.
» Expand the above equation to have,
.7 9. k
o =73+ MNZZ, + s + S e
(J.k (4.3)
—Z Zj:l 05" — Zs Zj:l a")
> > im qgi’j)qéj’k) can be computed as matrix multiplication
with 8-bit multipliers and 32-bit accumulators.
» The rest are computed with 32-bit multipliers and
accumulators — not a concern for efficiency since there will be
far more operations in the above matrix multiplication.

» Down-scale the result to 8-bit for qéf"k) with saturation.
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Post-Training Quantization
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How to obtain quantization parameters and quantized weight
matrices and bias vectors?
Post-training quantization

» Complete training in floating point numbers

» For each weight matrix or activation vector, choose a good

pair of (S, Z), typically from the range of the values.

Empirically, post-training quantization works well for large
models because there is certain level of redundancy.
Small models may see significant accuracy drop due to
outliers that effective narrow down the range.
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Training with Simulated Quantization
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Learn quantization parameters in training.

Instead of learning (S, Z) directly, learn two parameters (a, b)
for each weight matrix and activation vector.

> As mentioned before, (S, Z)'s for bias vectors are derived from

those of weights and activations instead of being learnt.

During the training process, clamp the values into range [a, b]
and then quantize them according to the bit width.
Intuitively, simulated quantization introduces noise into the
training process that the model learns to compensate.

» So the model will continue to work accurately for inference
when quantization introduces the same kind of noise.
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Natural Language Processing (NLP)

» Use natural language as interface between computers and
human beings.

» Applications

Voice command

Machine translation

Text summarization

Image and video captioning

Question answering

Story, image, and video generation

Many more to come

VVVVYYVYYVYY

» Turing test: what is intelligence?
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Tokenization

» Convert texts in natural language into tokens that may have
meanings to facilitate further processing.
» Character-based tokenization
» Simple and effective to digitalize texts, e.g. ASCII and Unicode

» Need extra effort when characters don't carry meanings by
themselves, e.g. English.
» Word-based tokenization
» Encode individual words and punctuations using a vocabulary.
» How to handle out-of-vocabulary and misspelled words?
> A very difficult task by itself for languages without word
separators, e.g. Chinese.

» Subword tokenization

» |earn common patterns from character sequences as subword
that usually carry meanings and fall back to characters.

» Handle rare, new, or misspelled words by breaking them into
known subword (and characters).
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Embedding
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If there are M different tokens, a token can be represented as
a M x 1 vector via one-hot encoding.

» One element is 1 while the rest are 0.

However, one-hot encoding doesn't capture any meanings.

Embedding: represent tokens as vectors (usually shorter) to
capture semantic relationships and similarities.

» Tokens are then points in the embedding space.
» Tokens with similar meanings like ‘I' and 'me’ are mapped to
points that are close in a subspace.
Assume each vector is of the size d x 1, embedding is learnt
during the training process as a d x M matrix.
For now on, we will not distinguish between the token and its
vector after embedding.
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Encoder-Decoder Models

» Most NLP tasks can be formulated as to generate an output
sequence of tokens from an input sequence of tokens.

» Since both input and output sequences can have arbitrary
lengths, two models are introduced for the NLP task.
» Encoder C' = E(C,z): process the input sequence of arbitrary
length by consuming one token z at a time and transforming
the context vector C' of fixed size into the next one C’.
» Decoder (z,C") = D(C): generate the output sequence one
token at a time by computing a token x from the context
vector C' and transforming C' into the next one C’.
» Intuitively, both encoder £ and decoder D are FSMs.
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Autoregression

» Decoder needs to be statistical: (Pr,C") = D(C)

» Have to learn from natural languages, which are ambiguous
and have a lot of variability.

» Instead of the actual token z, decoder computes Pr as the
vector of the probability of each token to be the output.

» A sampling process then samples Pr to obtain x.

» But then C’ has no knowledge of & — how could the decoder
ensure the whole output sequence to be coherent?

» Autoregression: (Pr,C") = D(C,z~ Y, z72,..., =)
» The decoder takes a window of IV previously generated output
tokens as additional inputs to make better predictions.
» Challenges
» How can we design encoders and decoders as neural networks?

» How to define loss functions to train models?
» How to obtain data for training?
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