
ECE 587 – Hardware/Software Co-Design
Lecture 19

Neural Networks and Systolic Array

Professor Jia Wang
Department of Electrical and Computer Engineering

Illinois Institute of Technology

March 26, 2025

1/25 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT

Outline

Neural Networks

Systolic Array

Gemmini

2/25 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT

Reading Assignment

▶ This lecture: Neural Networks and Systolic Array

▶ Next lecture: Quantization

3/25 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT

Outline

Neural Networks

Systolic Array

Gemmini

4/25 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT

(Artificial) Neural Networks

▶ A model of computation inspired by biological neurons.
▶ Still, we don’t know how biological neural networks work.
▶ Dated back to 1940’s but with a few AI winters.

▶ Substantial progress since the last decade.
▶ Availability of large amount of data.
▶ Availability of GPUs for general-purpose computing.

▶ Most neural networks are DFGs.
▶ Feedforward, uni-directional, without cycles or loops.
▶ A node compute its output as a simple function of its inputs,

e.g. weighted summation, activation, and softmax.
▶ Together, any vector-valued function can be approximated.

▶ Layers: tremendous number of nodes are organized into layers
to facilitate reasoning and implementation.
▶ Layers are ordered so that outputs from previous layers are

used as inputs to next layers.

5/25 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT

A Typical Layer

h = g(W⊤x+ b)

▶ x: input vector of this layer

▶ h: output vector of this layer
▶ W , b: weight matrix and bias vector

▶ Could be fixed paramaters or inputs to the layer.

▶ g: activation function
▶ A fixed nonlinear function applied element-wise to a vector.

▶ Learning by approximating known input/output relations.
▶ Find a good number of layers and then W and b for each layer.
▶ Challenge: generalization – the learned model should also

perform nicely on unseen inputs.
▶ Deep learning: models with more layers tend to generalize

better as they require less dimension in W and b.

6/25 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT

Computation vs. Communication

h = g(W⊤x+ b)

▶ Use simple assumptions to predict bottlenecks for neural
network hardware accelerators.

▶ Assume x to be a N × 1 vector and W to be a N ×N matrix.
▶ Computation

▶ N ×N multiply–accumulate operations (MACs).
▶ N activations.

▶ Communication
▶ Assume W cannot all fit into memory but x and b can.
▶ 2N to load x and b into memory.
▶ N ×N to process W column by column.
▶ N to output h.

▶ Too few computation per communication (1 : 1)
▶ Difficult to design efficient hardware accelerators.

▶ Can we increase the computation-to-communication ratio?
7/25 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT

Batch Processing

H = g(W⊤X +B)

▶ There are cases where outputs are computed from multiple
(M) inputs for the same neural network, e.g. for training.
▶ M << N so that X and B can fit into memory.

▶ H, X, B are N ×M matrices while W is N ×N matrix.
▶ Computation

▶ M ×N ×N multiply–accumulate operations (MACs).
▶ M ×N activations.

▶ Communication
▶ N +N ×M to load X and B into memory.
▶ N ×N to process W column by column.
▶ N ×M to output H row by row.

▶ Better computation-to-communication ratio M : 1.

8/25 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT

Convolutional Neural Networks

h = g(W⊤x+ b)

▶ x may have internal structures for particular applications.
▶ E.g. 3-D (width/height/channels) for images.

▶ W maybe designed specifically for such structure.
▶ With less freedom to improve generalization.
▶ E.g. convolution where weighted summations are computed

from a small moving window of x via identical kernels.

▶ Computation: reduced as many elements of W are 0.
▶ kN assuming each element of x corresponds to k non-zeros in

W with k << N .

▶ Communication: reduced as W can fit into memory.
▶ 2N to input x and output h

▶ Better computation-to-communication ratio k : 1

9/25 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT

Outline

Neural Networks

Systolic Array

Gemmini

10/25 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT

Systolic Array

▶ An array of processing elements (PEs) with highly regular
layout and local interconnects.
▶ To match dataflow of a particular computational task.
▶ Without the need to load/store intermediate results frequently.
▶ E.g. for matrix-matrix multiplication.

▶ Support massively parallel datapath computing via scaling.
▶ Communications between PEs should be local.
▶ Avoid complex control logics when reusing data.

(Gemmini)

11/25 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT

Matrix Multiplication C = AB +D

c11 c12
c21 c22
.

 =

a11 a12
a21 a22
.

(
b11 b12
b21 b22

)
+

d11 d12
d21 d22
.

c11 = a11b11 + a12b21 + d11, c12 = a11b12 + a12b22 + d12,

c21 = a21b11 + a22b21 + d21, c22 = a21b12 + a22b22 + d22,

. . . , . . . ,

▶ Consider a simple case where size of B is small.
▶ E.g. a 2× 2 matrix.

▶ Weight-stationary dataflow
▶ Preload B into the accelerator.
▶ Process A, D, and C row by row.

12/25 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT

Array Design for Weight-Stationary Dataflow

c11 = a11b11 + a12b21 + d11, c12 = a11b12 + a12b22 + d12,

c21 = a21b11 + a22b21 + d21, c22 = a21b12 + a22b22 + d22,

. . . , . . . ,

▶ Use an array of multiply-accumulate (MAC) PEs.
▶ Each PE completes one MAC operation per clock cycle.

▶ Match the shape of the array to that of B.
▶ Each PE performs multiplications with one fixed element of B.

▶ How to connect PEs? How to schedule and bind operations?
▶ So that the design can be scaled to larger arrays.
▶ Need to avoid global interconnects and complex control logics.

13/25 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT

Example: 2× 2 Systolic Array

PE11 PE12

PE21 PE22

H
1
1

H
1
2

H
2
1

H
2
2

b11

b21

S01

S11

S21

b12

b22

S02

S12

S22

▶ Registers are colored.

▶ Preload B to green registers.
▶ For each cycle (next state),

▶ Load a row of A into H11, H21

▶ Load a row of D into S01, S02

▶ Store S21, S22 into a row of C
▶ H12 ← H11, H22 ← H21

▶ S11 ← b11 ∗H11 + S01

▶ S12 ← b12 ∗H12 + S02

▶ S21 ← b21 ∗H21 + S11

▶ S22 ← b22 ∗H22 + S12

▶ Local interconnects.

▶ Simple control logics.

14/25 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT

Example: Cycle 1

PE11 PE12

PE21 PE22

a
1
1

b11

b21

d11 b12

b22

▶ Actually, rows of A, D, and C are
staggered for load/store.
▶ a11 and d11 become available at

the beginning of the first cycle.

15/25 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT

Example: Cycle 2

PE11 PE12

PE21 PE22

a
2
1

a
1
1

a
1
2

b11

b21

d21

a11b11+d11

b12

b22

d12

▶ c11 = a11b11 + a12b21 + d11 will be
stored next cycle.

16/25 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT

Example: Cycle 3

PE11 PE12

PE21 PE22

a
3
1

a
2
1

a
2
2

a
1
2

b11

b21

d31

a21b11+d21

c11

b12

b22

d22

a11b12+d12

▶ c21 = a21b11 + a22b21 + d21 will be
available next cycle.

▶ c12 = a11b12 + a12b22 + d12 will be
available next cycle.

17/25 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT

Example: Cycle 4

PE11 PE12

PE21 PE22

a
4
1

a
3
1

a
3
2

a
2
2

b11

b21

d41

a31b11+d31

c21

b12

b22

d32

a21b12+d22

c12

▶ c31 = a31b11 + a32b21 + d31 will be
available next cycle.

▶ c22 = a21b12 + a22b22 + d22 will be
available next cycle.

▶ Eventually, 2 cycles after loading
all rows of A and D, all rows of C
are computed and stored.

18/25 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT

Additional Details

▶ It seems 3 PEs are idle for Cycle 1.
▶ Keep PEs always busy to improve utilization.

▶ What if we need to compute another set of C = AB +D?
▶ PEs could be kept busy by preloading this set of B while

computing with the previous set.

▶ Double buffer: provide two sets of storage for B
▶ Compute with one set of B while preload the next set.
▶ Preload B by shifting rows in a staggered manner to match

the loading pattern of A.
▶ Tag elements of B to indicate which set to use and to stop

shifting once elements reach their desiginated PEs.

▶ What about multiplying matrices with arbitrary sizes?
▶ Use block matrix multiplication to decompose the computation

into smaller matrix multiplications that fit into the array.

19/25 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT

Block Matrix Multiplication

C

=

A

∗

B

▶ C[1 : 8, 1 : 2] can be computed in 3 array multiplications.

1. C[1 : 8, 1 : 2] = A[1 : 8, 1 : 2]B[1 : 2, 1 : 2]
2. C[1 : 8, 1 : 2] = A[1 : 8, 3 : 4]B[3 : 4, 1 : 2] +C[1 : 8, 1 : 2]
3. C[1 : 8, 1 : 2] = A[1 : 8, 5 : 6]B[5 : 6, 1 : 2] +C[1 : 8, 1 : 2]

▶ Overall, C can be computed in 6 array multiplications.
▶ Need controller to coordinate data movement.

20/25 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT

Outline

Neural Networks

Systolic Array

Gemmini

21/25 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT

Gemmini

▶ A full-system, full-stack DNN hardware exploration and
evaluation platform.
▶ Part of Chipyard and written in Chisel.

(Gemmini)

22/25 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT

Gemmini Features

▶ A RoCC (RISC-V Custom Coprocessor) accelerator.
▶ Connect to a Rocket or BOOM tile through the RoCC port

and interfaces.
▶ Execute custom RISC-V instructions sent by RISC-V processor.

▶ Feature a systolic array for efficient matrix multiplication.
▶ Support weight-stationary and other dataflows.
▶ Addtional accumulator consisting of SRAM storage and adders

for weight-stationary dataflow.

▶ Memory architecture
▶ Explicitly managed internal scratchpad.
▶ Interface with processor memory via the System Bus, linking

directly to the L2 cache.

▶ Hardware support for activation functions (like ReLU),
quantization, and matrix transpose.

23/25 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT

Scratchpad and Accumulator SRAM

▶ The systolic array has a dimension of DIMxDIM.
▶ Both scratchpad and accumulator SRAM consist of rows.

▶ Addressed in the same shared private memory space by rows.
▶ Each row contains DIM elements.
▶ The elements are of inputType for scratchpad.
▶ The elements are of accType for accumulator.

▶ accType usually has more bits than inputType so that
accumulator can add with higher precision.

▶ Activations and quantizations may be applied when moving
data from accumulator SRAM to scratchpad.

24/25 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT

Gemmini Instructions

▶ Provide low-level control over three internal pipeplines
▶ Load pipeline and store pipeline

▶ gemmini config ld and gemmini config st: let Gemmini know
the matrix row size in the main memory.

▶ gemmini mvin and gemmini mvout: load a DIMxDIM block
from L2 to Gemmini, or store a DIMxDIM block to L2.

▶ Execute pipeline
▶ gemmini config ex: configurate options for multiplication, e.g.

dataflow and activation function.
▶ gemmini preload: move B from Gemmini scratchpad into the

systolic array, configurate where C should be stored.
▶ gemmini compute preloaded: move A into the systolic array,

multiply B and write result to C as set by gemmini preload.

▶ Work on the project to learn more on high-level Gemmini
functions that are easier to use.

25/25 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT

	Neural Networks
	Systolic Array
	Gemmini

