
ECE 587 – Hardware/Software Co-Design
Lecture 16 Hardware Synthesis II

Professor Jia Wang
Department of Electrical and Computer Engineering

Illinois Institute of Technology

March 10, 2025

1/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Reading Assignment

▶ This lecture: 6

▶ Next Lecture: 6

2/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Outline

Scheduling

Sharing

3/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



General HLS Flow

▶ What are missing from our simplified flow?
▶ Input as CDFG instead of DFG
▶ What if allocation is not available?

▶ A more general flow
▶ Input as CDFG: don’t worry about other input formats, they

are at lower abstraction levels and will be handled as HLS goes.
▶ Synthesize CDFG into FSMD: schedule both the dataflow and

the control flow w/ or w/o allocation
▶ Synthesize FSMD into RTL: HLS optimization is much easier

when confined to a single clock cycle

4/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Example Application

▶ Approximate the square root of the sum of two squares.

SRA:
√

a2 + b2 ≈ max(0.875max(a, b) + 0.5min(a, b), a, b)

5/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Untimed Specifications: C and CDFG

(Gajski et al.)
6/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Fundamental Scheduling Algorithms

▶ ASAP (as-soon-as-possible)
▶ Assume each operation will take one clock cycle to finish
▶ Assume an unlimited number of functional units are available
▶ Schedule an operation as soon as all its operands are available
▶ The execution is only constrained by data dependencies but

not structural dependencies.
▶ We will obtain a schedule with the shortest execution time.

▶ ALAP (as-late-as-possible)
▶ Same assumption as ASAP
▶ Schedule an operation as late as possible, but not too late so

that the overall execution will take more time than a given
bound.

▶ Assume the bound is the shortest execute time for now (as
obtained in ASAP scheduling).

7/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



ASAP and ALAP Scheduling Examples

(Gajski et al.)

8/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Critical Path

▶ Without structural dependencies, the shortest execution time
of a DFG is determined by its critical path.
▶ Critical paths: paths with the maximum number of operations
▶ Critical operations: operations on at least one critical path
▶ Non-critical operations: operations not on any critical paths

▶ Critical operations are scheduled to the same state (cstep) in
both ASAP and ALAP algorithms.

▶ Non-critical operations are scheduled to different states.
▶ e.g. min and >>1 in our example
▶ The earliest possible state to execute it is obtained from ASAP.
▶ The latest possible state (deadline) to execute it is obtained

from ALAP.

9/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Mobility

▶ The criticality of an operation can be modeled by its mobility.
▶ Mobility of an operation = (Its starting time in ALAP) - (Its

starting time in ASAP)
▶ e.g. in our previous example, both min and >>1 have a

mobility of 1, and others have a mobility of 0.

▶ We can extend mobility to the case where the time bound for
ALAP is NOT the shortest execution time.
▶ Redefine critical operations to be those with 0 mobility
▶ Redefine non-critical operations to be those with positive

mobility

▶ Mobility provides a measure to prioritize operations if we
cannot schedule all operations that are ready.
▶ e.g. due to structural dependencies

▶ Other measures exist. But none is perfect for all cases.
▶ Need to combine several for better results.

10/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Advanced Scheduling Algorithms

▶ Resource-constrained (RC) scheduling
▶ When the allocation is provided by the designer, we should

follow it and schedule for the best performance.

▶ Time-constrained (TC) scheduling
▶ When the desired execution time is provided by the designer,

we should schedule all the operations within the bound using
least amount of resource.

11/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



RC Scheduling

▶ Since we want to obtain a schedule with the best
performance, it is reasonable to compute the shortest
execution time ignoring the resource constraints first.
▶ Perform ASAP scheduling

▶ Perform ALAP scheduling using the shortest execution time as
bound and then compute mobility
▶ Mobilities will be used to select operations that are ready but

cannot be scheduled due to structural dependencies.

▶ Schedule operations from the first state, at each state:
▶ Put all operations whose operands are ready to the ready list
▶ Sort the ready list by the increasing order of mobilities,

breaking ties using other measure like urgencies (distance to
the deadline as computed in ALAP)

▶ Scan the ready list from the beginning, bind operations to
available functional units until no functional unit is available or
the end of the ready list is reached.

12/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



RC Scheduling Example

(Gajski et al.)
▶ Assume one arithmetic unit and two shift units are available

13/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



TC Scheduling

▶ Perform ASAP scheduling to make sure the given bound on
the execution time is feasible.

▶ Perform ALAP scheduling using the given bound and then
compute mobility

▶ Utilize the mobility to reduce resource usages

14/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



TC Scheduling Example

(Gajski et al.)

15/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



TC Scheduling Example (Cont.)

(Gajski et al.)
▶ Need one arithmetic unit and one shift unit.

16/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



FSMD as Output of Scheduling (Assume ASAP)

(Gajski et al.)

17/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



After Scheduling: Optimization Ideas

▶ Allow multiple variables to share the same register
▶ If their lifetimes do not overlap

▶ Use register file/scratch-pad memory to save connections
from/to registers
▶ If they do not need to be used at the same time

▶ Share the same functional unit for multiple operations
▶ Across different cycles

▶ Group connections into buses

18/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Outline

Scheduling

Sharing

19/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Register Sharing

▶ We assume any variable is only written once.
▶ Multiple writes to the same variable are resolved by renaming

the variable for each write.

▶ Variable lifetime: set of states where the variable is alive
▶ Write state: the state after it is assigned a new value
▶ Read state: the states it is used on certain RHS’
▶ All states between the write and the last read state

▶ Group variables with non-overlapping lifetimes and bind each
group to a single register
▶ Try to have as few registers as possible

▶ There may exist many ways to group variables into the
minimum number of groups.
▶ Break the tie by considering a second design metric
▶ e.g. the connectivity cost measured as number of selector

inputs (mux’s to registers)

20/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Variable Binding and Connectivity Cost

(Gajski et al.)

▶ The register can be shared at both input and output to reduce
connectivity cost.

21/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Connectivity Cost Optimization via Compatibility Graph

(Gajski et al.)

▶ Variables connected by dotted edge cannot share a register.
▶ Solid edges indicate gains if variables share a register.

22/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Final Variable Bindings

(Gajski et al.)

▶ Prefer to merge nodes with high gains

23/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Datapath after Register Sharing

(Gajski et al.)

▶ Assume a function unit is available for each type of operation

▶ Further savings on interconnects can be achieved via
functional unit sharing.

24/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Functional Unit Sharing

▶ Minimize number of functional units in datapath
▶ Within any given state, a datapath will not perform every

operation.
▶ Similar operations can be grouped into a single multifunction

unit if they are active at different states

▶ Increase unit utilizations

▶ Usually it’s not helpful to group dissimilar operations as they
demand structurally different designs.

25/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Functional Unit Sharing Gain

(Gajski et al.)

▶ Note the extra selectors required for functional unit sharing

▶ The sharing would be advantageous if the cost of an
adder/subtractor and two selectors is less than the cost of a
separate adder and subtractor.

26/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Functional Unit Sharing via Compatibility Graph

(Gajski et al.)

▶ Dotted edges indicate units that cannot be merged.
▶ Weights on solid edges represent number of common sources

and number of common destinations.
▶ In common registers instead of common variables.

27/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Functional Unit Merging

(Gajski et al.)

▶ Prefer to merge nodes with similar structures and high gains

28/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Datapath after Register and Functional Unit Sharing

(Gajski et al.)

▶ Only 7 selector inputs are needed.

29/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Connection Sharing

▶ Interconnects do consume considerable amount of resource in
modern chip designs.
▶ Consist of metal wires, vias, and buffers.

▶ Merge connections into buses to reduce resource usage
▶ Group connections not used at the same time
▶ Use tri-state buffer to connect connection sources to bus
▶ We may implement the selectors the same way as how big

mux’s are implemented.

30/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Connection Usage Table and Compatibility Graph

(Gajski et al.)

31/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Bus Assignment

(Gajski et al.)

32/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Updated Datapath with Buses

(Gajski et al.)

33/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Summary

▶ For a general HLS flow, the first step could be a scheduling
that outputs the cycle-accurate behavior as FSMD.

▶ Allocations and bindings are applied to the FSMD model
state-by-state, and further optimizations are also possible.

▶ Resource usage can be optimized via sharing of registers and
functional units, as well as merging connections into buses.

34/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT


	Scheduling
	Sharing

