
ECE 587 – Hardware/Software Co-Design
Lecture 15 Hardware Synthesis I

Professor Jia Wang
Department of Electrical and Computer Engineering

Illinois Institute of Technology

March 5, 2025

1/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Reading Assignment

▶ This lecture: 6

▶ Next lecture: 6

2/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Outline

Hardware Synthesis

Simplified HLS Flow

3/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Hardware Synthesis via High-Level Synthesis (HLS)

▶ A method to generate hardware implementations from
behavioral descriptions

▶ Input
▶ Behavioral descriptions, e.g CDFG
▶ RTL library: available hardware resources
▶ Design constraints

▶ Output: RTL netlist
▶ A synchronous circuit consisting of functional units, registers,

interconnects, and control logics.

▶ From untimed behavior to cycle-accurate behavior

4/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



RTL Architecture

▶ Although the output of HW synthesis is the RTL/FSM model
of the component, we can divide it into pieces.
▶ Facilitate reasonings/communications
▶ Optimize with specialized algorithms

▶ Datapath
▶ Perform complicate, but usually combinational, computations
▶ Produce status signals for decision making

▶ Controller
▶ Provide control signals to the datapath, e.g. to collect input

data and to distribute output data
▶ Interact with other components, e.g. to notify completion and

to start computation once activated

5/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Controller vs. Datapath

(Gajski et al.)

6/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Controller vs. Datapath: A Detailed Diagram

(Gajski et al.)

7/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Controller and Datapath Implementations

▶ The FSM of the whole HW component can be decomposed
into a FSMD.
▶ The controller as a FSM (much less states compared to the

FSM for the whole component)
▶ The datapath as data and their operations associated with

each state transition

▶ Controller FSM
▶ Current state: stored in State Register (SR)
▶ State transition: computed via input logic
▶ Inputs: including original inputs and status bits returned by

datapath operations
▶ Outputs: computed via output logic, including original outputs

and signals to activate corresponding datapath operations

▶ Datapath
▶ Registers: for data storage and pipelining
▶ Functional units: for computation
▶ Interconnects: shared busses and wires, plus muxes and

tri-state buffers for multiplexing

8/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



HW Synthesis Design Flow

(Gajski et al.)

9/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



HLS Tasks

▶ Allocation: spatial aspects of the hardware system
▶ Determine the type and quantity of hardware resources used
▶ Directly affect chip area

▶ Scheduling: temporal aspects of the hardware system
▶ Determine the clock period
▶ Determine when (the clock cycle) the activities in CDFG

should be executed
▶ Directly affect total execution time

▶ Binding: connecting spatial and temporal aspects
▶ Determine the hardware resources to execute each activities
▶ Become important as metrics beyond chip area and execution

time are of concern

▶ An optimal HLS algorithm should explore all possibilities in
these tasks
▶ A very difficult problem.

10/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Possible HLS Flows

▶ Complete allocation/binding/scheduling sequentially

▶ Pre-allocation: define architecture for HW processor first

▶ Pre-binding: optimize register usage first

▶ Pre-scheduling: avoid structural dependency in inner loops
first

11/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Outline

Hardware Synthesis

Simplified HLS Flow

12/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Simplified HLS Setting

▶ Input
▶ Behavioral description based on DFG
▶ Ignore design constraints

▶ Fixed allocation for functional units
▶ Functional units are combinational: no pipelining, need storage

units for input/output

▶ Scheduling
▶ Fixed clock period
▶ No chaining: no data-dependency among activities executed in

one clock cycle

▶ Objective: generate a hardware implementation with
reasonably good performance and cost

13/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Simplified Design Flow

1. DFG generation

2. Scheduling and functional units binding

3. Storage units allocation and binding

4. Control unit synthesis

▶ 2 and 3 are usually known as datapath synthesis

14/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Example Program

double u, w, y, dx;

int i, N;

for (i = 0; i < N; ++i) {

double u1, u2, u3, u4, u5, u6, y1;

u1 = u *dx;

u2 = 5 *w;

u3 = 3 *y;

y1 = i *dx;

w = w +dx;

u4 = u1*u2;

u5 = dx*u3;

y = y +y1;

u6 = u -u4;

u = u6-u5;

}

▶ Assume we need to speed-up the loop body by hardware
implementations

15/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Step 1: DFG Generation

▶ Based on data dependency of loop body

▶ Vertices are operations (activities), edges are variables

16/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Example Functional Units Allocation

▶ add: need 1 clock cycles to generate result

▶ sub: need 1 clock cycles to generate result

▶ mulA and mulB: need 4 clock cycles to generate result

17/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Step 2: Scheduling and Functional Units Binding

▶ Control step (cstep): usually equivalent to a clock cycle
▶ Correspond to the lifetime of a single state in the FSM

representing the control unit

▶ Scheduling and functional units binding algorithm
▶ Assign operations to functional units iteratively until all

operations are assigned
▶ Assume external variables to loop body (e.g. u, w, y, i, dx) are

ready in cstep 0 and scheduling starts in cstep 1
▶ Each iteration handles one cstep
▶ Data dependency: only operations with no unfinished

predecessor at the beginning of the cstep can start execution in
the cstep

▶ Structural dependency: subject to the availability of functional
units

18/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Control Step 1: Beginning

19/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Control Step 1: Ending

20/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Control Step 2: Beginning

21/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Control Step 5: Beginning

22/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Control Step 9: Beginning

23/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Control Step 13: Beginning

24/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Overall Scheduling and Functional Units Binding

25/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Step 3: Storage Units Allocation and Binding

▶ Storage units: registers (flip-flops)
▶ The straight-forward approach: allocate a register to each

variable
▶ Drawbacks: may need more than necessary number of

registers, increase chip area

▶ Solution: share registers among variables
▶ Variable lifetime: time interval between its definition to its last

use
▶ Two variables can share a register if their lifetimes don’t

overlap

▶ Assume external variables to loop body (e.g. u, w, y, i, dx)
won’t share registers with other variables

26/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Variable Lifetimes

27/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



The Left Edge Algorithm for Register Allocation and
Binding

1. Sort variables into a list by the starting points of their
lifetimes in ascending order

2. Allocate a register R for the first variable and remove the
variable from the list

3. Bind R to the first variable in the list such that there is no
overlap of lifetimes and remove the variable from the list

4. Repeat 3 until no such variable exists

5. Repeat 2 to 4 until there is no variable in the list

28/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Register Allocations

▶ Need 5+3=8 instead of 5+7=12 registers

29/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Overall Scheduling and Binding

30/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Hardware Diagram

31/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Step 4: Control Unit Synthesis

▶ The Diagram in the previous slide is clearly not completed
▶ An input port cannot driven by multiple signals
▶ A register should hold its data until being explicitly changed

▶ Use a mux at each input to choose the correct signal
▶ Control unit synthesis: design FSMs to generate the control

signals for the mux’s
▶ State transition depends on scheduling and binding

32/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Generate State Transitions for FSM Design

Port csteps
1 2 3 4 5 6 7 8 9 10 11 12 13

mulA.x Ru Ru Ru Ru R1 R1 R1 R1 Rdx Rdx Rdx Rdx *
mulA.y Rdx Rdx Rdx Rdx R2 R2 R2 R2 R2 R2 R2 R2 *
Ry Ry Ry Ry Ry Ry Ry Ry Ry Ry Ry Ry Ry add
R1 * * * mulA R1 R1 R1 mulA sub R1 R1 R1 *
R2 * * * mulB R2 R2 R2 mulB R2 R2 R2 mulA *

33/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Summary

▶ Hardware synthesis is based on high-level synthesis that
converts behavior specification into RTL.

▶ Dependencies among allocation/binding/scheduling make
HLS difficult.
▶ Functional units allocation affects scheduling and function

units binding.
▶ Scheduling and function units binding affects storage units

allocation and binding.
▶ Scheduling and binding affects control unit design.

34/34 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT


	Hardware Synthesis
	Simplified HLS Flow

