ECE 587 — Hardware/Software Co-Design
Lecture 14 System Synthesis, Software Synthesis

Professor Jia Wang
Department of Electrical and Computer Engineering
Illinois Institute of Technology

March 3, 2025

1/37 ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



Reading Assignment

» This lecture: 4,5
» Next lecture: 6

2/37 ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



System Synthesis

Software Synthesis

3/37 ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



Constructing System Models

» System models are constructed via combining layers of
computation and communication models.

» Different choices of layers lead to different system models.
» Partial features from certain layer, or merged features from
multiple layers can be included.
» Specification model
» Various MoCs specified as hierarchical, sequential/parallel
composition of processes communicating through abstract
variables and message -passing channels.
» Transaction-level models (TLMs)

» Mappings of processes and channels to processors and busses
» Additional details but still in abstracted forms

» Cycle-accurate model (CAM)

» Cycle-accurate computation as RTL/instructions
» Pins and wires with driven protocols

4/37 ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



System Models

Cycle Accurate Model
Transaction Level Models B
Specification Model
App | 7. Application —/ MP \I— 7. Application App
| 6. Presentation > 6. Presentation
5. Session 5. Session
OS | 4. Transport 4. Transport oS
3.  Network ‘ TLM ' 3. Network
2b. Link + Stream 2b. Link + Stream
HAL | 2a. Media Access 2a. Media Access |HAL
~— 2a. Protocol 2a. Protocol =
HW . . HW
1. Physical 1. Physical
7 Address |
: Data :
Control | !
cam |/
I it it einiaiaininie J

FIGURE 3.28 System models

5/37 ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT

(Gajski et al.)



Traditional Board-Based System Design |

&4

Platform HW Dev. Board SW Dev. Board App. Dev.  Prototype
+BSP

FIGURE 4.1 A traditional board-based system design process.
. . . . Gajski et al.
» Platform architect first defines a high-level pIatform(lncsluémg)

type of processors and communication architecture.
P Application characteristics are considered.
» e.g use DSP for multimedia codec designs and use embedded
processors for control intensive applications
» Then, the number of each component should be decided.
» Depends on the number of independent tasks or available
parallelism in the application.
» Without an evaluation model, the platform architect depends
on his or her experience and the application profile.
» The platform may be chosen based on legacy considerations.
» New components are added for product updates.
6/37 ECE 587 — Hardware /Software Co-Design. Dept. of ECE, IT



Traditional Board-Based System Design ||

Platform HW Dev.  Board SWDev. Board App. Dev.  Prototype
+BSP

FIGURE 4.1 A traditional board-based system design process.
(Gajski et al.)
» HW engineers implement the platform and deliver the board
before SW developers develop the system software.
» Include HDL models of custom blocks and configurations of
processors and other IPs.
» Before the application's SW development could begin, the
development of boards and board support packages (BSPs) is
required.

» The system prototype is produced after application SW is
ready using the BSPs and downloaded to the board.

7/37 ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



Traditional Board-Based System Design Ill

» Sequential development of HW and SW causes delays.

» Both the application SW and the HW/BSP development take
several months.

» The system prototype is not ready until more than a year after
specification.

» Additional verification issues may result in further delays.

» Who should be accountable for bugs during software
development? Buggy hardware design or improper use of the
hardware due to poor understanding of software developers?

» Time will be wasted between interactions between HW/SW
teams and ad-hoc decisions.

8/37 ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



Model Based System Design

Applicéiik;n
Developer
1

TLM
Gen.

Board

Platform

! +BSP
i +App

ASIC/
FPGA
Tools

FIGURE 4.3 A model based development flow of the future.

Prototype

(Gajski et al.)

» Instead of being postponed to the end of design process,
application drives platform selection and HW/SW generation.

» TLM is first generated automatically from high level
platform /application specifications.

» Platform is then defined/derived and application is mapped.

» Modification of system architecture or application is possible
even late in the design process as everything will be generated
automatically.

9/37

ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



TLM Based Design Flow

Specification

System Synthesis

SW/HW Synthesis

FIGURE 4.4 TLM based design flow.

(Gajski et al.)

10/37 ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



System Specification Model

» Application model

» Purely functional w/o implementation details
» Typically executable for early functional validation

» SW/HW platform

» Structural: components and their connectivity
» Usually not executable

» Mapping application and platform

» Computational elements (processes) to processors
» Communication elements (channels) to buses or routes

11/37 ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



System Synthesis

» Generate TLM according to application and its mapping on
the platform
» Generate the mapping or the platform if necessary
P Utilize a database describing components
» Functionality?
» Performance metrics?
» Configuration settings?
» The ideal TLM output is one that provides a reasonable
balance between fast simulation and accurate estimation.
» Though the actual TLM output depends upon the design
methodology and the availability of component models.

12/37 ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



The Next Step: from TLM to PCAM/CAM

SW/RTOS
Library

RTLIP

Library

i

TLM
| i
SW C->RTL Interface | __
Synthesis (Forte/NISC) Synthesis
OR =
Bus
Binary > (HWRTL D (IFRTL

Pin/Cycle Accurate Model (PCAM)

Generator

ICA Sim,|

Tools

-

FIGURE 4.27 Cycle accurate model generation from TLM.

C/Verilog PCAM

Prototype

FPGA
Tools

(Gajski et al.)

13/37 ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



System Synthesis

Software Synthesis

14/37 ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



Software Design

> Software development dominates the design cost of modern
computing systems.
» Complexity of software increases.

» Overall system complexity increases.
» Designers prefer software-centric implementations because of
productivity and flexibility.

15/37 ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



Automated Software Synthesis

» Generate software from models.
» The final products are the binaries for processors.

» Benefits

» No tedious and error-prone manual code writing
» Demands less processor- and platform-specific knowledge from
the designer
» Each synthesis step can be individually verified.
» Increase productivity by reducing time for development and
debugging

16/37 ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



Challenges for Software Development/Synthesis

» Coupling to underlying hardware and external processes

» Timeliness
» Real-time constraints extend to software implementation
» Correctness not only means correct functionality, but also the
ability to meet deadlines.
» Predictable execution time is more important than fast
execution.
» Concurrency
» Scheduling with real-time constraints is complicated.

» Resource constraints

» Memory, computing power, energy consumption, power
dissipation, etc.

17/37 ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



Software Synthesis and Programming Languages

» Software synthesis leverages existing software design tools.

> Software can be generated in existing programming
language(s)
» Instead of binaries, which can be produced by existing tools
» Allow designers to have better control over the final code

> What languages are available?

18/37 ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



Programming Languages

» Assembly: provide fine-grained control over processors

» Processor dependent and overly verbose for large projects
» C: provide low-level features

» Processor independent, require minimal run-time support
» C++4: compatible with C, provide higher level abstractions

» Complicated, large runtime overhead if not used properly
> Java: a simplified derivative of C++

> Prevent unnecessary mistakes (both functional and
performance-wise) by being less flexible

» JVM provides supports of concurrency and communications at
language level, though slow speed is a concern.

» To meet deadlines is challenging due to garbage collection.

» And there are many more other programming languages.

19/37 ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



Multi-Task Synthesis

» For dynamic on-line scheduling
» Off-line scheduling can be represented as sequential
composition of tasks and there is no need for multi-task
support at run-time.
» RTOS-based multi-tasking
» User tasks are executed on top of an off-the-shelf RTOS and
are scheduled by the RTOS scheduler.
» Preferred when there is enough resource due to its flexibility
and maturity
» Interrupt-based multi-tasking
» Applicable when off-the-shelf RTOS’ are not suitable due to
performance and resource constraints.
» Also similar to how RTOS implements task management and
task scheduling.

20/37 ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



RTOS-Based Multi-Tasking

SW Application
Drivers |
RTOS Abstraction Layer
RTOS
Interrupts | HAL

FIGURE 5.6 Software execution stack for RTOS-based multi- ta%kkln% 1)
Gajski et a

» Off-the-shelf RTOS' are typically reliable and well-tested.
» Significant tool supports are available from the RTOS vendor.

» Highly configurable to reduce memory footprint.

21/37 ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



The Software Stack

> HAL

» Hide hardware differences from OS, e.g. different processors,
interrupt controllers, timers

» For OS to switch tasks, HAL could help to hide details for
saving and restoring the processor’s internal state.

P Interrupts provide synchronization with external devices

» RTOS provides services for task management,
communication, and timing management.

» RTOS Abstraction Layer (RAL)

» Provide a canonical OS interface for application portability,
e.g. standardized APIs like POSIX.
» Make the synthesis flow applicable to multiple RTOS’ by
decoupling synthesis and the target RTOS
» Drivers
» Implement application-specific communication with external
components using services provided at lower layers

22/37 ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



Interrupt-Based Multi-Tasking

SW Application
Drivers

RTOS Abstraction Layer
(emulation)

Interrupts | HAL

FIGURE 5.8 Software execution stack for interrupt-based multi-tasking
ajski et al.)

» Suitable when there is not enough resource to accommodate
an RTOS
» Work on a bare processor without any RTOS

» There is no RTOS layer while the RAL layer provide partial
emulation.

23/37 ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



Scheduling and Processor State

» Execution flow of a task can be modeled as a FSM.
» The state is a combination of processor state and memory
state local to the task, i.e. the stack.
» Scheduling as saving and restoring processor state
» Assume memory local to a task won't be modified by other
tasks
» Create a task: allocate memory for processor state storage and
the stack
P> Suspend a task: save the processor state
P> Resume a task: restore the processor state
» Terminate a task: release memory

» Combining with ISRs, this is how RTOS implements
scheduling.

» However, this may not be suitable when there are a huge
amount of processes.

» Overhead of context switch.
» Not enough memory for each task to have its own stack.

24/37 ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



Specifying Tasks as FSMs

25/37

The solution is to specifying tasks as FSMs explicitly.

> As actors.
Each task then manages its own state without referring to the
processor state or the stack.

Multiple tasks can then be scheduled to run “concurrently” on
the same processor by interleaving their state transitions.
» Executing times for state transitions should be constrained to
achieve certain scheduling goals.
If tasks are not already specified as actors, FSMs may be
generated.

ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



Example FSM Generation

Co

e

S1 4 1)

T1

C2 412
ST3 w

S2 (4 12) S5

T2 LTQ

(a) Input (b) Output

FIGURE 5.9 Interrupt-based multi-tasking example (Gajski et al.)
26/37 ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT J °



Interrupts-Based C Multi-Tasking

1 /% interrupt handler =/

2 void intHandler I1() {

3 release(S1):  /x ser S1 ready =/

1 executeTaskO(): / task state machine =/
s}

& /[ task state machine =/

7 void executeTask0() {

s do { switch(Task0.State) {

9 b

10 case ST1: Cl(...);

1 Task0.State = ST2;

12 case ST2: if(attempt(S1)) T1_receive(...);

13 else break:
14 2.
15 TaskO.State = ST3;

16 case ST3: /x ... +/
7} } while (Task0.State == ST1):
18}

FIGURE 5.9 LISTING 5.5 State machine implementation
o (Gajski et al.)

(b) Output

27/37 ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



External Communications and Driver Synthesis

» Tasks on different processors communicate via devices like
network interfaces that attached to the processors.

» Devices are accessed via drivers managed by OS.

» To implement various drivers, it is reasonable to follow the
7-layer model as the objective is to support communications.

28/37 ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



Presentation Layer

i typedef struct stReq {

2

3

4
5

long startTime;

short coeff1;

unsigned short base;

} tReq;
LISTING 5.7 User type definition
tReq

long startTime

short coeff1

unsigned short base

L

[oyte |

startTime |

coefft

base

FIGURE 5.12 Marshalling example

» Use marshalling (and demarshalling)

1 void myCh_send(/* ...

> unsigned char #pB = This—>buf;
3 htonlong(pB. pD—>startTime);

+ pB+=4;

s htonshort(pB, pD—>>coeff1):

s pB+=2;

7 htonushort(pB, pD—>base);

5 pB4=2;

9 DLinkO_trans_send(/«...s/This—>buf, 8);

w0 }
LISTING 5.8

Marshalling code

data from) processor independent layout

» Host-to-network functions take care of byte endianness.

» Marshalling/demarshalling code could be generated
automatically.

> What if a more complicated data structure should be

supported?
ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT

29/37

+/ +This, struct tReq *pD){

Gajski. et al.
to create (and @iskisiald



Transport Layer

Byte stream

[ I Packet 2 I

| Packet 1

FIGURE 5.13 Packetization
DLink0_trans_send(void +pMsg, unsigned int len){ DLinkO-netsend(pPos, pktLen): /« transfer +/
unsigned char x«pPos = pMsg:
while(len) {
unsigned long pktLen;
/% length is minimum of max size and len «/
pktLen = min(len, CONFIG_PACKET_SIZE); }
LISTING 5.9 Packetization code example
(Gajski et al.)

len —=pktlen:/x decr. transferred len +/
pPos += pktLen; /« advance pointer +/

> Utilize a low level service that supports only messages with
fixed lengths via packetization.
» What if multiplexing is necessary?

30/37 ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



Link/HAL Layer: Synchronization by Interrupts

os |HAL

MAC

Task Task
B2 c2 B |

: A 4

d RTOS MODEL D
%

(Usrlnﬂ @srlnt2

FIGURE 5.14 Chain for interrupt-based synchroniza['t Diski et al.)

31/37 ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



Events in Interrupt-Based Synchronization

HW1 HW2 PIC Processor Core
B4 ]| [reg B5] [reg INT | [TaskB3] [TaskB2
peat 4
=l % Int (D Preemption by Int. Y4
o — (@)|Whnich Int.?

5

@ Int. Source?
 —
@|qsem2:send()

Data Transfer

a7

FIGURE 5.15 Events in interrupt-based synchronization o
(Gajski et al.)

» Each driver component handles a set of events.
» Hardware ISR preempts the current task.
» SyslInt queries PIC for detailed interrupt data.
» INTC queries hardware status and triggers UsrInt2 that post
the semaphore.

32/37 ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



Link/HAL Layer: Synchronization by Polling

os |HAL

MAC

Task Task
B2 c2 B |

v
RTOS MODEL D

Usrint1

FIGURE 5.16 Polling-based synchronization (Gajski et al.)

33/37 ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



Events in Polling-Based Synchronization

HW2 PIC Processor Core
B5| [reg INT | [TaskB3| [TaskB2
= | (ﬂ Ready ? .
] (2) Ready ? _:_ 1
';E: M | ) Ready ? i -
g_ | (4) Data Transfer .
/(D -

FIGURE 5.17 Events in polling-based synchronization
(Gajski et al.)
> The task repeatedly checks hardware status and yields if

cannot proceed.
» How often should the task check?

» More often: overhead in scheduling, waste processor cycles
» Less often: the hardware may need to wait when ready

34/37 ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



Binary Image Generation

T

Software Synthesis
| Code Generation | | HdS Generation |

Build and Configuration

A

e —

. Processo
D s
_Compiler

B

SW DB

-RTOS

e /< -
Cross Compile RTOS >=
- - Wrapper

and Link TOS Por
Startup > o
~ N

FIGURE 5.19 Binary image generation

|- —|— |

(Gajski et al.)

35/37 ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



Execution

36/37

The produced binaries are downloaded onto the target
platform and executed.

The target platform may be implemented as an ASIC or using
a FPGA prototyping platform.

» Allow to validate cycle-accurate functionality.

» Allow to validate signal timing in physical world.
Alternatively, the binaries can be validated using a virtual
platform.

» Usually based on an instruction-set simulator (ISS) as

cycle-accurate simulation will be too slow.
Designers may utilize detailed feedback to further improve the
system, and trigger the synthesis again for design iterations.

» Automated synthesis speeds up the whole process so designers
may explore more system implementations.

ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



Virtual Platform

ISS SLDL Wrappe

__________________________________ -

ISS Library Process i

SW Application

Drivers

RTOS Abstraction Layer
RTOS

Interrupts HAL

Core

HW1 HW2
(B« )| |(es )
Net Net
Link Link
Prot Prot
NT PIC INTA Timer
INT INTB
INTC

Source |- Control
Status Load
Mask Value

FIGURE 5.20 1SS-based Virtual platform

37/37 ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT

(Gajski et al.)



	System Synthesis
	Software Synthesis

