
ECE 587 – Hardware/Software Co-Design
Lecture 14 System Synthesis, Software Synthesis

Professor Jia Wang
Department of Electrical and Computer Engineering

Illinois Institute of Technology

March 3, 2025

1/37 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Reading Assignment

▶ This lecture: 4,5

▶ Next lecture: 6

2/37 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Outline

System Synthesis

Software Synthesis

3/37 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Constructing System Models

▶ System models are constructed via combining layers of
computation and communication models.
▶ Different choices of layers lead to different system models.
▶ Partial features from certain layer, or merged features from

multiple layers can be included.

▶ Specification model
▶ Various MoCs specified as hierarchical, sequential/parallel

composition of processes communicating through abstract
variables and message -passing channels.

▶ Transaction-level models (TLMs)
▶ Mappings of processes and channels to processors and busses
▶ Additional details but still in abstracted forms

▶ Cycle-accurate model (CAM)
▶ Cycle-accurate computation as RTL/instructions
▶ Pins and wires with driven protocols

4/37 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



System Models

(Gajski et al.)

5/37 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Traditional Board-Based System Design I

(Gajski et al.)▶ Platform architect first defines a high-level platform including
type of processors and communication architecture.
▶ Application characteristics are considered.
▶ e.g use DSP for multimedia codec designs and use embedded

processors for control intensive applications

▶ Then, the number of each component should be decided.
▶ Depends on the number of independent tasks or available

parallelism in the application.
▶ Without an evaluation model, the platform architect depends

on his or her experience and the application profile.

▶ The platform may be chosen based on legacy considerations.
▶ New components are added for product updates.

6/37 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Traditional Board-Based System Design II

(Gajski et al.)
▶ HW engineers implement the platform and deliver the board

before SW developers develop the system software.
▶ Include HDL models of custom blocks and configurations of

processors and other IPs.

▶ Before the application’s SW development could begin, the
development of boards and board support packages (BSPs) is
required.

▶ The system prototype is produced after application SW is
ready using the BSPs and downloaded to the board.

7/37 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Traditional Board-Based System Design III

▶ Sequential development of HW and SW causes delays.
▶ Both the application SW and the HW/BSP development take

several months.
▶ The system prototype is not ready until more than a year after

specification.

▶ Additional verification issues may result in further delays.
▶ Who should be accountable for bugs during software

development? Buggy hardware design or improper use of the
hardware due to poor understanding of software developers?

▶ Time will be wasted between interactions between HW/SW
teams and ad-hoc decisions.

8/37 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Model Based System Design

(Gajski et al.)
▶ Instead of being postponed to the end of design process,

application drives platform selection and HW/SW generation.

▶ TLM is first generated automatically from high level
platform/application specifications.

▶ Platform is then defined/derived and application is mapped.

▶ Modification of system architecture or application is possible
even late in the design process as everything will be generated
automatically.

9/37 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



TLM Based Design Flow

(Gajski et al.)

10/37 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



System Specification Model

▶ Application model
▶ Purely functional w/o implementation details
▶ Typically executable for early functional validation

▶ SW/HW platform
▶ Structural: components and their connectivity
▶ Usually not executable

▶ Mapping application and platform
▶ Computational elements (processes) to processors
▶ Communication elements (channels) to buses or routes

11/37 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



System Synthesis

▶ Generate TLM according to application and its mapping on
the platform

▶ Generate the mapping or the platform if necessary
▶ Utilize a database describing components

▶ Functionality?
▶ Performance metrics?
▶ Configuration settings?

▶ The ideal TLM output is one that provides a reasonable
balance between fast simulation and accurate estimation.
▶ Though the actual TLM output depends upon the design

methodology and the availability of component models.

12/37 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



The Next Step: from TLM to PCAM/CAM

(Gajski et al.)

13/37 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Outline

System Synthesis

Software Synthesis

14/37 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Software Design

▶ Software development dominates the design cost of modern
computing systems.

▶ Complexity of software increases.
▶ Overall system complexity increases.
▶ Designers prefer software-centric implementations because of

productivity and flexibility.

15/37 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Automated Software Synthesis

▶ Generate software from models.
▶ The final products are the binaries for processors.

▶ Benefits
▶ No tedious and error-prone manual code writing
▶ Demands less processor- and platform-specific knowledge from

the designer
▶ Each synthesis step can be individually verified.

▶ Increase productivity by reducing time for development and
debugging

16/37 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Challenges for Software Development/Synthesis

▶ Coupling to underlying hardware and external processes
▶ Timeliness

▶ Real-time constraints extend to software implementation
▶ Correctness not only means correct functionality, but also the

ability to meet deadlines.
▶ Predictable execution time is more important than fast

execution.

▶ Concurrency
▶ Scheduling with real-time constraints is complicated.

▶ Resource constraints
▶ Memory, computing power, energy consumption, power

dissipation, etc.

17/37 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Software Synthesis and Programming Languages

▶ Software synthesis leverages existing software design tools.
▶ Software can be generated in existing programming

language(s)
▶ Instead of binaries, which can be produced by existing tools
▶ Allow designers to have better control over the final code

▶ What languages are available?

18/37 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Programming Languages

▶ Assembly: provide fine-grained control over processors
▶ Processor dependent and overly verbose for large projects

▶ C: provide low-level features
▶ Processor independent, require minimal run-time support

▶ C++: compatible with C, provide higher level abstractions
▶ Complicated, large runtime overhead if not used properly

▶ Java: a simplified derivative of C++
▶ Prevent unnecessary mistakes (both functional and

performance-wise) by being less flexible
▶ JVM provides supports of concurrency and communications at

language level, though slow speed is a concern.
▶ To meet deadlines is challenging due to garbage collection.

▶ And there are many more other programming languages.

19/37 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Multi-Task Synthesis

▶ For dynamic on-line scheduling
▶ Off-line scheduling can be represented as sequential

composition of tasks and there is no need for multi-task
support at run-time.

▶ RTOS-based multi-tasking
▶ User tasks are executed on top of an off-the-shelf RTOS and

are scheduled by the RTOS scheduler.
▶ Preferred when there is enough resource due to its flexibility

and maturity

▶ Interrupt-based multi-tasking
▶ Applicable when off-the-shelf RTOS’ are not suitable due to

performance and resource constraints.
▶ Also similar to how RTOS implements task management and

task scheduling.

20/37 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



RTOS-Based Multi-Tasking

(Gajski et al.)

▶ Off-the-shelf RTOS’ are typically reliable and well-tested.

▶ Significant tool supports are available from the RTOS vendor.

▶ Highly configurable to reduce memory footprint.

21/37 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



The Software Stack

▶ HAL
▶ Hide hardware differences from OS, e.g. different processors,

interrupt controllers, timers
▶ For OS to switch tasks, HAL could help to hide details for

saving and restoring the processor’s internal state.

▶ Interrupts provide synchronization with external devices

▶ RTOS provides services for task management,
communication, and timing management.

▶ RTOS Abstraction Layer (RAL)
▶ Provide a canonical OS interface for application portability,

e.g. standardized APIs like POSIX.
▶ Make the synthesis flow applicable to multiple RTOS’ by

decoupling synthesis and the target RTOS

▶ Drivers
▶ Implement application-specific communication with external

components using services provided at lower layers

22/37 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Interrupt-Based Multi-Tasking

(Gajski et al.)

▶ Suitable when there is not enough resource to accommodate
an RTOS

▶ Work on a bare processor without any RTOS

▶ There is no RTOS layer while the RAL layer provide partial
emulation.

23/37 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Scheduling and Processor State

▶ Execution flow of a task can be modeled as a FSM.
▶ The state is a combination of processor state and memory

state local to the task, i.e. the stack.

▶ Scheduling as saving and restoring processor state
▶ Assume memory local to a task won’t be modified by other

tasks
▶ Create a task: allocate memory for processor state storage and

the stack
▶ Suspend a task: save the processor state
▶ Resume a task: restore the processor state
▶ Terminate a task: release memory

▶ Combining with ISRs, this is how RTOS implements
scheduling.

▶ However, this may not be suitable when there are a huge
amount of processes.
▶ Overhead of context switch.
▶ Not enough memory for each task to have its own stack.

24/37 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Specifying Tasks as FSMs

▶ The solution is to specifying tasks as FSMs explicitly.
▶ As actors.

▶ Each task then manages its own state without referring to the
processor state or the stack.

▶ Multiple tasks can then be scheduled to run “concurrently” on
the same processor by interleaving their state transitions.
▶ Executing times for state transitions should be constrained to

achieve certain scheduling goals.

▶ If tasks are not already specified as actors, FSMs may be
generated.

25/37 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Example FSM Generation

(Gajski et al.)
26/37 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Interrupts-Based C Multi-Tasking

(Gajski et al.)

27/37 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



External Communications and Driver Synthesis

▶ Tasks on different processors communicate via devices like
network interfaces that attached to the processors.
▶ Devices are accessed via drivers managed by OS.

▶ To implement various drivers, it is reasonable to follow the
7-layer model as the objective is to support communications.

28/37 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Presentation Layer

(Gajski et al.)▶ Use marshalling (and demarshalling) to create (and to retrieve
data from) processor independent layout
▶ Host-to-network functions take care of byte endianness.
▶ Marshalling/demarshalling code could be generated

automatically.

▶ What if a more complicated data structure should be
supported?

29/37 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Transport Layer

(Gajski et al.)

▶ Utilize a low level service that supports only messages with
fixed lengths via packetization.

▶ What if multiplexing is necessary?

30/37 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Link/HAL Layer: Synchronization by Interrupts

(Gajski et al.)

31/37 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Events in Interrupt-Based Synchronization

(Gajski et al.)
▶ Each driver component handles a set of events.

▶ Hardware ISR preempts the current task.
▶ SysInt queries PIC for detailed interrupt data.
▶ INTC queries hardware status and triggers UsrInt2 that post

the semaphore.

32/37 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Link/HAL Layer: Synchronization by Polling

(Gajski et al.)

33/37 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Events in Polling-Based Synchronization

(Gajski et al.)
▶ The task repeatedly checks hardware status and yields if

cannot proceed.
▶ How often should the task check?

▶ More often: overhead in scheduling, waste processor cycles
▶ Less often: the hardware may need to wait when ready

34/37 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Binary Image Generation

(Gajski et al.)

35/37 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Execution

▶ The produced binaries are downloaded onto the target
platform and executed.

▶ The target platform may be implemented as an ASIC or using
a FPGA prototyping platform.
▶ Allow to validate cycle-accurate functionality.
▶ Allow to validate signal timing in physical world.

▶ Alternatively, the binaries can be validated using a virtual
platform.
▶ Usually based on an instruction-set simulator (ISS) as

cycle-accurate simulation will be too slow.

▶ Designers may utilize detailed feedback to further improve the
system, and trigger the synthesis again for design iterations.
▶ Automated synthesis speeds up the whole process so designers

may explore more system implementations.

36/37 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Virtual Platform

(Gajski et al.)

37/37 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT


	System Synthesis
	Software Synthesis

