
ECE 587 – Hardware/Software Co-Design
Lecture 13 Verification II

Professor Jia Wang
Department of Electrical and Computer Engineering

Illinois Institute of Technology

February 26, 2025

1/20 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Reading Assignment

▶ This lecture: 7.2, 7.3

▶ Next lecture: 4, 5

2/20 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Outline

Equivalence Checking

Model Checking

3/20 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Equivalence Checking

▶ Make sure two designs are the same
▶ in term of functionality

▶ Ensure the correctness of implementations and optimizations
▶ Designers could make mistakes when implement a system

manually.
▶ Automated software tools for synthesis and optimization may

have bugs.

▶ What does it mean by the same functionality?
▶ Same output given same input?

4/20 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Combinational Equivalence Checking

▶ What does it mean by the same functionality?
▶ Combinational circuits C1 and C2

▶ At least they should have the same inputs and outputs
▶ For any input x , the output C1(x) should be the same as

C2(x)

▶ One can build a larger combinational circuit
E (x) = (C1(x) ̸= C2(x)).
▶ XOR each pair of corresponding bits of C1(x) and C2(x)
▶ Then OR the results together

▶ To prove C1 and C2 are equivalent is the same as to prove
there is no x such that E (x) = 1.
▶ If such x exists, you can use it to debug your circuits.

5/20 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Satisfiability (SAT)

▶ Find x such that E (x) = 1 for a given combinational circuit E
or prove no such x exists.
▶ This is a well-studied problem: satisfiability (SAT)

▶ In theory, we don’t know if there is a better way to solve it
than to inspect the truth table of E .
▶ i.e. to try all possible inputs, 2N for N inputs

▶ In practice, efficient solutions have been developed during the
last two decades.
▶ That’s the reason formal verification becomes more and more

popular now.

6/20 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



FSM Equivalence Checking

▶ Concerning synchronous sequential circuits
▶ i.e. RTL designs

▶ For any input trace, the two FSM should produce the same
output trace.
▶ From certain initial states

▶ What about states and state encodings?
▶ State encodings could be different.
▶ States could also be different.

▶ In general a very difficult problem that requires further
research.
▶ In practice, if you could provide hints to relate the states of the

two circuits, tools may be able to provide a proof.

7/20 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



FSM Equivalence Checking Examples

(Gajski et al.)

▶ Consider reachable states in product FSM

8/20 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



A Special Case of FSM Equivalence Checking

(Gajski et al.)

▶ With the same states, state encodings, and initial states, one
just need to prove the next state and the output functions are
equivalent.

▶ That’s combinational equivalence checking. Solved!

9/20 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Limitations of Combinational and FSM Equivalence
Checking

▶ What if the functional equivalence goes beyond
inputs/outputs per cycle?
▶ e.g. two kinds of processors with the same ISA but requiring

different number of cycles to complete the same instructions?

▶ Although we perceive them as “equivalent”, it is difficult to
define equivalence in mathematical sense.

▶ Equivalence checkings cannot be applied as of now.
▶ We have to apply a more expensive method called model

checking.

10/20 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Outline

Equivalence Checking

Model Checking

11/20 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Model

▶ Model refers to desired system properties (in mathematics)
▶ Safety: bad things never happen
▶ Liveness: good things eventually happen

▶ Examples for safety
▶ Two circuits always produce the same outputs with the same

inputs (i.e. equivalence checking)
▶ The microwave oven will not start when the door is open.

▶ Examples for liveness
▶ A processor eventually executes an instruction.
▶ The brake is eventually applied after you hit the pedal (within

a deadline)

12/20 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Model Checking

(Gajski et al.)
▶ Model checking requires to represent the system and the

model to be checked in a mathematically unambiguous way.
▶ The system: FSM
▶ The model: temporal logic, a function that maps all traces of

state transitions to 0 and 1

▶ The system FSM could be the RTL implementation of the
system but is usually its abstraction.
▶ Enable one to check a RTL system with more than 10100 states

▶ Model checker will generate a counter example when the
property doesn’t hold, helping to identify corner cases for
simulation-based verification.

13/20 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Computation as a Tree

(Gajski et al.)

▶ We can expand the FSM into a tree that captures all possible
traces of state transitions to 0 and 1.

▶ Temporal logics are limited to certain traces on the tree.

14/20 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Temporal Logics I

(Gajski et al.)

(a) p always (G) holds in one future (E): liveness

(b) p always (G) holds in all futures (A): safety

15/20 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Temporal Logics II

(Gajski et al.)
(c) p holds eventually (F) in one future (E): safety

▶ EFp = ¬AG¬p
(d) p holds eventually (F) in all futures (A): liveness

▶ AFp = ¬EG¬p

16/20 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Example

▶ Consider a game that the player wins if he/sha could obtain
exactly 4 gallons of water using a 5 gallon jug, a 3 gallon jug,
and a water faucet.

▶ All jugs start empty.
▶ Each step the player could either

▶ Empty a jug to ground.
▶ Pour water from a jug to another, until one of them is empty

or full.
▶ Fill a jug full with the faucet.

▶ How to model the game and how to reason with the model?

17/20 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Example (Cont.)

▶ Use a state machine.
▶ State: (a, b), where a is the amount of water in the 5 gallon

jug, and b is the amount of water in the 3 gallon jug.
▶ Transition from (a, b): (0, b), (a, 0), (5, b), (a, 3),

(a+ b − 3, 3) or (0, a+ b), (5, a+ b − 5) or (a+ b, 0)

▶ EF: from (0, 0), can we reach (4, 0)?
▶ (0, 0) → (5, 0) → (2, 3) → (2, 0) → (0, 2) → (5, 2) →

(4, 3) → (4, 0)
▶ A harder question: is this the shortest path?

18/20 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Other Formal Verification Techniques

▶ Theorem proving via deductive reasoning
▶ Proofs are usually obtained interactively, i.e. designers need

provide additional deduction rules for the prover if it cannot
proceed further automatically.

▶ Bounded model checking
▶ Simplify model checking by bounding the lengths of traces

▶ Symbolic simulation
▶ Use symbols to increase coverage in simulation-based

verification while utilizing equivalence checking for monitor

19/20 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Summary of Verification Techniques

(Gajski et al.)

20/20 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT


	Equivalence Checking
	Model Checking

