
ECE 587 – Hardware/Software Co-Design
Lecture 12 Verification I

Professor Jia Wang
Department of Electrical and Computer Engineering

Illinois Institute of Technology

February 24, 2025

1/13 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Reading Assignment

▶ This lecture: 7.1

▶ Next lecture: 7.2, 7.3

2/13 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Outline

Verification

Simulation Based Methods

3/13 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Functional Verification

▶ Analysis and reasoning on a computer model of the system
▶ Before manufacturing

▶ Establish confidence in functional correctness before the
product is shipped
▶ Critical for systems where safety is the first concern
▶ Prevent costly recall for non-critical systems as well

▶ Designers need to make sure the model at each step of design
does reflect the original intent.
▶ Catch bugs as early as they are introduced so one can locate

them effectively

4/13 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Simulation Based Verification vs. Formal Verification

▶ Both verification methods need a golden reference as part of
the specification.
▶ Simulation based methods: stimuli (inputs) and monitors

(expected outputs)
▶ Formal methods: mathematical model of desired properties

▶ Simulation-based methods are effective to catch bugs at early
design stages, though only as good as the stimuli.

▶ Formal methods can provide a proof of correctness, but
require more effort at design time.

▶ Simulation is still predominant while formal methods are
catching up.
▶ More formal verification tools become available.
▶ More designers are trained to use these tools.
▶ e.g. most gate-level verifications are based on formal methods

nowadays

5/13 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Outline

Verification

Simulation Based Methods

6/13 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Simulation Based Methods

(Gajski et al.)

7/13 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Test-Bench

▶ A test-case consists of a stimulus and the corresponding
monitor.
▶ Monitors are usually generated from stimuli using a higher

level model (golden reference) that is more likely to be correct.

▶ A collection of test-cases forms the test-bench.
▶ To achieve maximum productivity, each test-case should

uncover some bug that has not been uncovered by a previous
one – waste of time to test part of DUT (device under test)
that have already been tested.

▶ How to measure the part being tested under a test-case?

8/13 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Coverage

▶ Could be based on the percentage of DUT that has been
checked
▶ e.g. in terms of # lines of source code
▶ or # states in a state diagram modeling the system

▶ However, that’s different from the entire behavior of the
design.
▶ A single statement may involve many variables and a test-case

covers it may miss some important corners.

▶ All corner cases may be modeled explicitly in the state
diagram for coverage.
▶ But then the size of the diagram will become a big concern.

9/13 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Performance Considerations

▶ Coverage may increase as you simulate with more test-cases.
▶ However, simulation takes time.
▶ Need to trade-off verification performance with quality

▶ Stimulus optimization: simulate less cases
▶ Use coverage feedback mechanism to improve test-cases that

are otherwise generated randomly
▶ Not all test-cases are valid – only simulate with valid ones

▶ Monitor optimization: discover bugs faster
▶ White box testing – also monitor internal variables
▶ Use assertions instead of golden for internal variables
▶ Communicate more effectively with designers via visualization

▶ Speed-up techniques: faster simulation
▶ Faster algorithms
▶ Hardware assistance, e.g. on FPGA
▶ Simulate at higher abstraction levels, if certain details can be

omitted, e.g. to use an instruction set simulator instead of a
cycle-accurate simulator.

10/13 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Coverage Feedback I

(Gajski et al.)

▶ The logic gates could be a simplification of branch conditions.

▶ It could be impossible to generate a single test-case to cover
all branches.

11/13 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Coverage Feedback II

(Gajski et al.)

▶ The additional test-cases can be found manually or
automatically (by formal methods).

12/13 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Hardware Emulation

(Gajski et al.)
▶ Speed-up simulations that cannot be speeded-up otherwise.

▶ Usually when cycle-accurate behavior has to be simulated

13/13 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT


	Verification
	Simulation Based Methods

