
ECE 587 – Hardware/Software Co-Design
Lecture 10 System Modeling,
Software Processor Modeling

Professor Jia Wang
Department of Electrical and Computer Engineering

Illinois Institute of Technology

February 17, 2025

1/41 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Reading Assignment

▶ This lecture: 3.3, 3.4

▶ Next lecture: 3.5

2/41 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Outline

System Modeling

Software Processor Modeling

Application Layer

Operating System Layer

Hardware Abstraction Layer

Hardware Layer

3/41 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



System Design Challenges

▶ Input: a high-level system specification
▶ Could be functionalities only described in models of

computations (MoCs)

▶ Output: a low-level system implementation
▶ Software: programs for the targeted instruction sets
▶ Hardware: what level?

▶ Methodologies and tools are mature for abstraction levels at
and below RTL for hardware.
▶ For system design, hardware implementations stop at RTL.

▶ No single step solution for system design
▶ Huge semantic gap exists between specification and

implementation: many ways to implement a single MoC

4/41 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



System Design Process

▶ Decompose the whole system design process into a series of
smaller steps.
▶ Ensure the semantic gap is small enough for a single step

▶ Each step is defined by a pair of system models.
▶ The one at higher abstraction level serves as specification.
▶ The one at lower abstraction level serves as implementation.

▶ Refinement: generate the implementation from the
specification for each step
▶ Introduce additional details limited to certain scope of the

specification
▶ Incorporate design decisions to choose one implementation

from multiple possible ones

▶ While more tools are available for refinement, it is critical for
designers to provide proper design decisions.
▶ Especially when an initial system implementation fails to meet

design constraints and multiple design iterations are necessary.

5/41 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Typical System Design Tool and Design Process

(Gajski et al.)

6/41 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Roles of Models

▶ The implementation of the previous design step will serve as
the specification of the next one.

▶ For implementation, models allow designers to reason about
design decisions by simulating and analyzing certain aspects of
the system.

▶ For specification, models document system features that need
to be implemented and decided.

▶ As design progresses,
▶ More details are included into the models so simulation and

analysis takes more time to finish.
▶ Simulation and analysis will become more accurate due to the

available details.
▶ Designers will be able to afford the increased simulation and

analysis time by focusing on the most important parts of the
system.

7/41 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Abstraction Levels for System Design

▶ At the highest abstraction level, we would assume the system
is specified using process-based models while each process is
specified using state-based models.

▶ What intermediate abstraction levels should we introduce for
HW/SW implementations?

▶ Separate communication from computation
▶ Compilers help to implement a single process as HW or SW.
▶ Communications become limiting factors for system

performance.

▶ Accurate system analysis demands accurate communication
modeling.
▶ The ratio of communication latency to computation latency

generally increases as more transistors are packed into a chip.
▶ Complex system requires more data to be transfered among

subsystems, resulting in latency with limited bandwidth and
excessive power consumption.

8/41 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Processor and Communication Modelings

▶ Processor modeling provides necessary details to evaluate
mappings from processes to processors.
▶ Processors: a.k.a. processing elements

▶ General-purpose processors
▶ DSPs and ASIPs
▶ ASICs

▶ The computation part of system modeling

▶ The communication part of system modeling is based on
communcation modeling.

9/41 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Processor Modeling

▶ Processors specific to certain applications
▶ Processes are usually specified with MoCs that can be directly

mapped to the processors.
▶ Based on hardware metrics, estimating system design metrics

could be straight-forward.
▶ Otherwise, we can model such processors as special cases of

general-purpose processors.
▶ General-purpose processors, or software processor

▶ Processes are usually specified as sequential programs.
▶ To estimate system design metrics, one has to consider not

only the programs but the supporting software (e.g. OS).
▶ Much more complicated than the above case. Will be our

focus.
▶ Challenges for software processors modeling

▶ Most estimations of system design metrics, e.g. latency,
throughput, and power consumption, depend on simulation.

▶ Models enabling fast simulations while providing accurate
(relatively) estimations are desired.

▶ At what level should we model software processors?
10/41 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Communication Modeling

▶ Adopt well-established ISO/OSI 7-layer model
▶ Layers are stacked on top of each other.
▶ Each layer provides services to layers above by using services of

the layer below.

▶ Layers are tailored to specific system design requirements.
▶ E.g. to reflect the HW/SW partitioning of the communication

functionality

▶ Use of layers facilities reasoning about communication stacks
▶ However, it should not prevent implementations to merging

functionalities across layers for various optimizations.
▶ The whole communication stack should be treated as a single

specification.

11/41 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Outline

System Modeling

Software Processor Modeling

Application Layer

Operating System Layer

Hardware Abstraction Layer

Hardware Layer

12/41 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Modeling Considerations

▶ At instruction level, processors can be modeled as FSMs, and
processes can be modeled as assembly programs. However,
▶ Simulations are slow as the supporting software are treated the

same way.
▶ With all the details mixed together, it is difficult for the

designers to make design decisions for improvements, especially
when multiple processes are mapped to a single processor.

▶ Separate the computation into layers
▶ E.g. processor, OS/library, application processes
▶ Allow designers to reason about various parts of the system.
▶ Certain functionality, e.g. those from OS/library, can be

simulated faster at levels higher than instructions.

▶ Software processor modeling is not limited only to the
processors themselves but should include all pieces of the
supporting software.

13/41 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Typical Modeling of Software Processor

(Gajski et al.)

14/41 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Typical Layers of Computation

▶ Processor Hardware (HW)
▶ Actual hardware that communicates with the other parts of

the system.

▶ Hardware Abstraction Layer (HAL)
▶ Provide abstractions of actual hardware as canonical interfaces

as most modern OS are hardware independent.

▶ Operating System (OS)
▶ Provide necessary services like multi-tasking, scheduling,

inter-process communication

▶ Application
▶ With the help of OS, we can still model multiple processes

mapped to the same processor as they are.

▶ Notion of time can be introduced as execution delay.
▶ Via back-annotation

15/41 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Outline

System Modeling

Software Processor Modeling

Application Layer

Operating System Layer

Hardware Abstraction Layer

Hardware Layer

16/41 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Application Modeling

▶ Applications are modeled as communicating processes.
▶ All this processes are running on the SAME processor so

somewhat you may ignore the costs associated with their
communications.

▶ Processes may be composed hierarchically, e.g. through the
fork-join model.
▶ Process scheduling is handled at the OS layer and is irrelevant

at this layer, though it may affect the performance of the
system.

▶ Communication mechanisms: shared variable and message
passing
▶ Message passing could be in its special and high-level forms

like events, semaphores, queues, and abstract channels.
▶ Message passing is most likely implemented at the OS layer,

though we need to include the specification for applications.

17/41 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Specifying Applications

▶ It is quite common that the initial application specifications
are migrated from some other systems.
▶ Computations are specified in a programming language like

C/C++
▶ Except shared variables, communications are specified as

function calls to certain library/OS.
▶ Process management are specified in similar ways like

communication.

▶ Methods for migrating code
▶ Computations are included directly.
▶ Function calls for communications/process management can

be replaced by corresponding primitives.

18/41 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Considerations for Simulation

▶ Fast simulation
▶ Computation could be emulated in host instructions, usually

much faster than simulating target instructions.
▶ Simulation kernel may be optimized to reduce process

management/scheduling overhead and communication costs,
and to utilize the multi-processing power of the host.

▶ Accurate estimations
▶ Back-annotation is necessary if timing behavior is of concern

as simulation is not performed on targeted platform.
▶ System design languages support back-annotations via

execution timings, which are independent of their running
times on host.

19/41 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Application Layer Modeling Example

(Gajski et al.)

20/41 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



More about Back-Annotation

▶ Back-annotations may be included at various level of
computations.
▶ E.g. the whole process or basic blocks

▶ As a process may react differently for different inputs,
assigning it a simple delay number could be inaccurate.

▶ Associating delay numbers with basic blocks makes it possible
to capture such dynamic behavior and thus improve accuracy.
▶ However, it will slow down simulation because of the excessive

interactions with the simulation kernel required by
back-annotation.

▶ There is always a trade-off between simulation speed and
accuracy.

▶ The delay numbers may be obtained by estimation or
measurement.

21/41 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Outline

System Modeling

Software Processor Modeling

Application Layer

Operating System Layer

Hardware Abstraction Layer

Hardware Layer

22/41 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



OS and Multi-Processing

▶ We assume processes are running truly concurrently at
application layer.

▶ However, when mapped to a single processor, that’s not
possible.

▶ OS provides the illusion that processes are running
concurrently,
▶ though actually they run sequentially on the processor.

▶ The major focus of the OS layer is thus to model the
scheduling of parallel processes on the sequential processor.

23/41 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Static vs. Dynamic Scheduling

▶ Static scheduling combines processes into a singe task
following a pre-defined static schedule.
▶ E.g. you may interleave the statements of multiple processes

to achieve a static round-robin scheduling.
▶ Modeling of static scheduling is no harder than modeling of a

sequential program.
▶ What if a process need to communicate for either data or

synchronization and have to wait?
▶ The task has to wait.
▶ All the processes in the task halt.
▶ May hurt system latency/throughput or even lead to artificial

deadlocks
▶ Dynamic scheduling allows OS, at runtime, to hang tasks that

have to wait and to execute tasks that are ready to go.
▶ For embedded systems, typically a Real-Time Operating

System (RTOS) is used.
▶ And thus a model of RTOS should be established.
▶ Real-time here doesn’t imply low computing latency, but

means mechanism to meet certain deadlines.
24/41 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Other OS Layer Modelings

▶ Process/task management

▶ Synchronization

▶ Timing, i.e. delay modeling
▶ Realize communication channels as IPC primitives

▶ Synchronization may be required.

25/41 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Interaction between Application and OS Layers

(Gajski et al.)

26/41 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



RTOS Modeling Choices

(Gajski et al.)

▶ For specification (a), tasks execute directly on the simulation
kernel and scheduling is omitted.

▶ There are two choices to model the actual RTOS scheduling
algorithm.
▶ (c) simulation at instruction level
▶ (b) provide a transaction-level RTOS model

27/41 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Instruction vs. Transaction-Level RTOS Modelings

▶ Instruction level simulation
▶ Need to compile all codes, including applications, to target

instructions.
▶ Simulation is done in an instruction-set simulator (ISS).
▶ More accurate but slower than transaction-level RTOS models.
▶ Less accurate but faster than cycle-accurate simulation of

actual hardware that consider micro-architectural details.

▶ Transaction-level RTOS models
▶ Enable fast application simulation in host instruction.
▶ Use an abstract RTOS model that removes unnecessary

implementation details that slow down the simulation.
▶ Only care about multi-tasking, preemption, interrupt handling,

inter-process communication, and synchronization
▶ Add only a negligible simulation overhead
▶ Allow designers to consider important OS effects early on in

the design process

28/41 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Example for Scheduling and Other OS Services

(Gajski et al.)

▶ Back-annotations are supported via waitfor().
▶ Why S1 arrives at the same time but not C1?

29/41 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Outline

System Modeling

Software Processor Modeling

Application Layer

Operating System Layer

Hardware Abstraction Layer

Hardware Layer

30/41 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Hardware Abstraction Layer (HAL)

▶ HAL provides the lowest level of software functionality.
▶ Serve as interface between software and hardware
▶ Implement canonical interfaces/services for use by OS, e.g.

interrupt service routines (ISRs) and I/O drivers, enabling
communications to other components.

▶ HAL is processor dependent.
▶ Implementations (templates) are associated with processors,

possible managed by a database when there are multiple types
of processors in the system (the PE database).

31/41 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Modeling I/O Drivers

▶ Communication at a bus interface may need to follow certain
protocol.
▶ Procedures to acquire/release the bus
▶ Notifications via HW interrupts
▶ The amount of bytes that could be transfered may be

predefined.
▶ Alignment requirements may be enforced for src/dest

addresses.

▶ HAL use drivers to hide the details
▶ Utilize two primitives: send and recv
▶ May transfer arbitrary amounts of bytes at arbitrary addresses

▶ These driver implementations are directly integrated with the
OS model.
▶ Communications between processes on different processors are

then realized based on bus models, which are seen per
processors as interrupts and bus transactions.

32/41 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



A Possible send Function

send_0(device, data, len) { // send via certain bus

bus.write_ctrl(ACQUIRE); // try to acquire the bus

while (bus.read_ctrl() != MASTER) {

// poll to see if the bus is acquired

//

// depending on bus implementations, this polling

// may need to be replaced with waiting for certain

// interrupt

}

msg = {device, DMA_SEND, data, len};

bus.write_data(msg); // send the DMA request to the device

bus.write_ctrl(RELEASE);

wait for the interrupt that indicates the completion

of the DMA operation from the device

}

33/41 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Modeling HW Interrupts

▶ HW interrupts are triggered by external events.
▶ For HAL, we are not interested in modeling interrupts caused

by system calls, which should be modeled directly at OS level.

▶ HW interrupts need to be handled quickly.
▶ So you won’t miss other HW interrupts since they should be

masked/blocked inside the ISRs.
▶ The ISRs should contain minimum amount of codes, only

those absolutely necessary.
▶ What if there is a lot of work to do for certain HW interrupt?

▶ In most modern OS’, further processings are deferred to
user-level tasks.
▶ They are created/triggered by HW ISRs and are scheduled at

OS level.
▶ Can be modeled in similar ways as application tasks

34/41 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



A Possible HW ISR

hw_isr_0() { // isr for certain HW interrupt

block_all_interrupts();

msg = extract data associated with interrupt

add_user_task(process_isr_0, msg);

if (preempt)

switch to the context of the OS scheduler

unblock_all_interrupts();

}

process_isr_0(msg) {

if (msg.reason == DMA_SEND_DONE) {

sem_dma_done[msg.device].post(); // notify sender by semaphores

}

...

}

send_0(device, data, dest_addr) {

...

sem_dma_done[device].wait(); // this is how the waiting is implemented

}

35/41 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



HAL Layer Modeling Example

(Gajski et al.)

▶ What about computations in HW ISRs? Where do they run?
▶ E.g. IntA to IntD, or hw isr 0?

36/41 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Outline

System Modeling

Software Processor Modeling

Application Layer

Operating System Layer

Hardware Abstraction Layer

Hardware Layer

37/41 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Interrupt Scheduling

(Gajski et al.)

▶ The HW ISR (IntC) would also consume processor cycles for
computation
▶ If such HW ISRs do consume a significant amount of processor

cycles, they have to be “scheduled” with other processes (P1
and P2) for accurate modeling.

38/41 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Hardware Layer

▶ Provide means to model the timing of HW ISRs
▶ HW ISRs are NOT scheduled by OS.

▶ They are triggered by external events and are usually fired at
the instruction boundary.

▶ At the end of these ISRs, you may choose to simply return to
the current pending task or hand over the control to OS
scheduler.

▶ Hardware layer modeling should consider and include such
implementation details.
▶ Introduce a separate model of the processor’s hardware

interrupt logic
▶ Suspend HAL/OS/application when HW interrupts arrive
▶ Resume execution when exiting ISRs, possibly causing OS to

re-schedule tasks.

39/41 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Hardware Layer Modeling Example

(Gajski et al.)

40/41 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Other Hardware Layer Modelings

▶ Peripherals, e.g. timers, immediately associated with the
processor.

▶ (Programmable) interrupt controller, e.g. for interrupt
priorities.

▶ Communications via bus models
▶ Transaction-level bus models
▶ Pin-accurate and cycle-accurate bus models

41/41 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT


	System Modeling
	Software Processor Modeling
	Application Layer
	Operating System Layer
	Hardware Abstraction Layer
	Hardware Layer

