1/17

ECE 587 — Hardware/Software Co-Design
Lecture 08 Concurrency in Practice |l

Professor Jia Wang
Department of Electrical and Computer Engineering
lllinois Institute of Technology

February 10, 2025

ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



Reading Assignment

» This lecture: Memory Ordering
» Next lectures: RISC-V and Chipyard

2/17 ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



Memory Ordering

Memory Barrier

3/17 ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



Observable State Transitions

>

>

4/17

We assume each process in a process-based model is specified
by a state-based model, e.g. a sequential program.

For shared memory communication, processes react by
observing changes in the shared states.

» [t is possible to implement shared memory communication on

top of message passing and vice versa.

» So here we refer to the shared memory communication as is.
Are the observed state transitions the same as the state-based
model specify in practice?

> State bits that are not observable (from the shared memory).

» Missing transitions.

» Reordered transitions.

Let's look at multi-threaded programs on multi-core
processors.

ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



Single Core Performance

» Each processor core can issue an instruction per clock cycle:
fraction of a nano-second (ns).

> Memory access latency: about 10 ns

» There must be optimizations or the core has to wait for
memory.
» Compiler
» Micro-architecture
» Cache

5/17 ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



Compiler Optimization

> Registers

» Once a variable is available from a register, there is no need to
read it from the memory.

» A variable in a register need to be written to the memory only
if the register need to be used for another variable.

> Registers are not observable from other processes.

» Operations can be reordered as long as there is no data or
control dependency.
» Think of DFG.
» If the above are true for any single process, what about
observed state transitions?
» |s it possible/correct for a variable to stay only in the register?

» Is it possible/correct for a variable to have two different values,
one in the register and one in the memory?

6/17 ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



Micro-Architecture

» While a core may issue an instruction per cycle, the
instruction may take several cycles to complete.
» Lengthy computations.
» Wait for data to be available from memory.

» Out-Of-Order (OOO) execution

» Allow later instructions to execute as long as there is no
data/control dependencies.

> A load/store buffer is usually necessary to buffer memory
writes and to forward memory reads for better performance.

» Re-order buffer (ROB) helps to commit intructions in order,
giving the illusion that they are executed in order.

» Out-Of-Order memory updates

» After the instruction is committed, for correctness on a single
core, it doesn't matter when the load/store buffer actually
updates the memory.

» Similar effects as compiler optimization.

7/17 ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



Cache

» Cache brings data closer to the processor core.
> No need to go to (main) memory if the data is available from
the cache.
» There are multiple copies of the same data in the memory
hierarchy.
» Main memory.
» Multiple levels of cache.
» If there are many cores, each core may have its own cache.
» The load/store buffer on each core.

8/17 ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



Cache Coherence

» Ensure cores to have consensus on the value of a particular
memory location.
» MESI protocol

» State-based, each core maintain a FSM per cache line.
> 4 states: Modified, Exclusive, Shared, Invalid
» Shared read or exclusive write per cache line.

» If the variable fits into a cache line, then writes/reads to it are
ordered sequentially across cores, though not deterministic.

» Contention happens when many cores attempt to update the
same cache line simultaneously.

9/17 ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



When Intuition Fails ...

Core 1 Core 2

data = 100; while (ready == 0)

ready = 1; wait_a_while();
print(data);

» Assume initially ready=0 and data=0.
» What could happen?

» Assume a cache coherence protocol is used.
» Does it matter if you turn on/off compiler optimizations?

10/17 ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



Memory Ordering

Memory Barrier

11/17 ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



Memory Barrier

» Cache coherence ensures ordering of memory access to the
same memory location (cache line).

» But not to multiple memory locations.
» Memory barriers provide guarantees of ordering among
accesses to multiple memory locations.
> A joint effort of compiler and core micro-architecture.

» Need language support to guide compiler optimization.
» Compiler further translates them into corresponding special
instructions that force updates in the memory hierarchy.

12/17 ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



Example: Use a Channel

int main() {
channel<std::string> chan;

std: :thread p([&] {
chan.put("hello");
chan.put ("world") ;
B

std::thread c([&] {
printf("%s\n", chan.get().c_str());

printf ("%s\n", chan.get().c_str());
b

p.join(); c.join(Q);
return O;

P> Message passing via channel.
» How to implement the channel via shared memory?

13/17 ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



A Simple Channel Implementation

template <class T>
class channel {
std::atomic<bool> empty_;

T val_;
public:
channel () {
empty_.store(true, std::memory_order_relaxed);
}

}; // class channel<T>

> std::memory_order_relaxed prevents any compiler
optimization and ensures atomic updates.

» Thread creation works as full memory barrier so both threads
will see empty_ as true initially.

14/17 ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



A Simple Channel Implementation (Cont.)

template <class T>
class channel {

T get() {
while (empty_.load(std::memory_order_acquire))
T ret = val_;
empty_.store(true, std::memory_order_release);
return ret;

}

void put(const T &val) {
while (!empty_.load(std::memory_order_acquire))
val_ = val;
empty_.store(false, std::memory_order_release);

}

}; // class channel<T>

P> store with std: :memory_order_release pairs with load
with memory_order_acquire.
» Prevent compiler optimization.
» Preceding stores will be seen by loads afterwards.
15/17 ECE 587 — Hardware/Software Co-Design. Dept. of ECE, IIT



Discussions

>

16/17

Memory barriers usually work in pairs to establish the
so-called happens-before relations to ensure visibility of
memory updates.

There are memory barriers other than the release-acquire pair,
depending on processor architectures.

OS synchronizations (thread creation, lock, etc.) work as full
memory barrier where all ordering with reference to them are
preserved across all threads.

When contention is low, since our channel doesn’t use any OS
synchronization that may potentially suspend the thread, the
communication latency could be very small.

How to implement a channel that can hold more than one
token, or can support multiple producers?

ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



Further Readings

» Java Concurrency in Practice, Goetz et al., 2006.
» C++ Concurrency in Action, Williams, 2012.

» Is Parallel Programming Hard, And, If So, What Can You Do
About It?
https://www.kernel.org/pub/linux/kernel/people/
paulmck/perfbook/perfbook.html

17/17 ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT


https://www.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
https://www.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html

	Memory Ordering
	Memory Barrier

