
ECE 587 – Hardware/Software Co-Design
Lecture 08 Concurrency in Practice II

Professor Jia Wang
Department of Electrical and Computer Engineering

Illinois Institute of Technology

February 10, 2025

1/17 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Reading Assignment

▶ This lecture: Memory Ordering

▶ Next lectures: RISC-V and Chipyard

2/17 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Outline

Memory Ordering

Memory Barrier

3/17 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Observable State Transitions

▶ We assume each process in a process-based model is specified
by a state-based model, e.g. a sequential program.

▶ For shared memory communication, processes react by
observing changes in the shared states.
▶ It is possible to implement shared memory communication on

top of message passing and vice versa.
▶ So here we refer to the shared memory communication as is.

▶ Are the observed state transitions the same as the state-based
model specify in practice?
▶ State bits that are not observable (from the shared memory).
▶ Missing transitions.
▶ Reordered transitions.

▶ Let’s look at multi-threaded programs on multi-core
processors.

4/17 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Single Core Performance

▶ Each processor core can issue an instruction per clock cycle:
fraction of a nano-second (ns).

▶ Memory access latency: about 10 ns
▶ There must be optimizations or the core has to wait for

memory.
▶ Compiler
▶ Micro-architecture
▶ Cache

5/17 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Compiler Optimization

▶ Registers
▶ Once a variable is available from a register, there is no need to

read it from the memory.
▶ A variable in a register need to be written to the memory only

if the register need to be used for another variable.
▶ Registers are not observable from other processes.

▶ Operations can be reordered as long as there is no data or
control dependency.
▶ Think of DFG.

▶ If the above are true for any single process, what about
observed state transitions?
▶ Is it possible/correct for a variable to stay only in the register?
▶ Is it possible/correct for a variable to have two different values,

one in the register and one in the memory?

6/17 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Micro-Architecture

▶ While a core may issue an instruction per cycle, the
instruction may take several cycles to complete.
▶ Lengthy computations.
▶ Wait for data to be available from memory.

▶ Out-Of-Order (OOO) execution
▶ Allow later instructions to execute as long as there is no

data/control dependencies.
▶ A load/store buffer is usually necessary to buffer memory

writes and to forward memory reads for better performance.
▶ Re-order buffer (ROB) helps to commit intructions in order,

giving the illusion that they are executed in order.

▶ Out-Of-Order memory updates
▶ After the instruction is committed, for correctness on a single

core, it doesn’t matter when the load/store buffer actually
updates the memory.

▶ Similar effects as compiler optimization.

7/17 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Cache

▶ Cache brings data closer to the processor core.
▶ No need to go to (main) memory if the data is available from

the cache.

▶ There are multiple copies of the same data in the memory
hierarchy.
▶ Main memory.
▶ Multiple levels of cache.
▶ If there are many cores, each core may have its own cache.
▶ The load/store buffer on each core.

8/17 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Cache Coherence

▶ Ensure cores to have consensus on the value of a particular
memory location.

▶ MESI protocol
▶ State-based, each core maintain a FSM per cache line.
▶ 4 states: Modified, Exclusive, Shared, Invalid
▶ Shared read or exclusive write per cache line.

▶ If the variable fits into a cache line, then writes/reads to it are
ordered sequentially across cores, though not deterministic.

▶ Contention happens when many cores attempt to update the
same cache line simultaneously.

9/17 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



When Intuition Fails ...

▶ Assume initially ready=0 and data=0.
▶ What could happen?

▶ Assume a cache coherence protocol is used.
▶ Does it matter if you turn on/off compiler optimizations?

10/17 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT

Core 1

data = 100;

ready = 1;

Core 2

while (ready == 0)

wait_a_while();

print(data);



Outline

Memory Ordering

Memory Barrier

11/17 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Memory Barrier

▶ Cache coherence ensures ordering of memory access to the
same memory location (cache line).
▶ But not to multiple memory locations.

▶ Memory barriers provide guarantees of ordering among
accesses to multiple memory locations.

▶ A joint effort of compiler and core micro-architecture.
▶ Need language support to guide compiler optimization.
▶ Compiler further translates them into corresponding special

instructions that force updates in the memory hierarchy.

12/17 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Example: Use a Channel

int main() {

channel<std::string> chan;

std::thread p([&] {

chan.put("hello");

chan.put("world");

});

std::thread c([&] {

printf("%s\n", chan.get().c_str());

printf("%s\n", chan.get().c_str());

});

p.join(); c.join();

return 0;

}

▶ Message passing via channel.

▶ How to implement the channel via shared memory?

13/17 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



A Simple Channel Implementation

template <class T>

class channel {

std::atomic<bool> empty_;

T val_;

public:

channel() {

empty_.store(true, std::memory_order_relaxed);

}

...

}; // class channel<T>

▶ std::memory_order_relaxed prevents any compiler
optimization and ensures atomic updates.

▶ Thread creation works as full memory barrier so both threads
will see empty_ as true initially.

14/17 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



A Simple Channel Implementation (Cont.)

template <class T>

class channel {

...

T get() {

while (empty_.load(std::memory_order_acquire))

;

T ret = val_;

empty_.store(true, std::memory_order_release);

return ret;

}

void put(const T &val) {

while (!empty_.load(std::memory_order_acquire))

;

val_ = val;

empty_.store(false, std::memory_order_release);

}

}; // class channel<T>

▶ store with std::memory_order_release pairs with load
with memory_order_acquire.
▶ Prevent compiler optimization.
▶ Preceding stores will be seen by loads afterwards.

15/17 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Discussions

▶ Memory barriers usually work in pairs to establish the
so-called happens-before relations to ensure visibility of
memory updates.

▶ There are memory barriers other than the release-acquire pair,
depending on processor architectures.

▶ OS synchronizations (thread creation, lock, etc.) work as full
memory barrier where all ordering with reference to them are
preserved across all threads.

▶ When contention is low, since our channel doesn’t use any OS
synchronization that may potentially suspend the thread, the
communication latency could be very small.

▶ How to implement a channel that can hold more than one
token, or can support multiple producers?

16/17 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Further Readings

▶ Java Concurrency in Practice, Goetz et al., 2006.

▶ C++ Concurrency in Action, Williams, 2012.

▶ Is Parallel Programming Hard, And, If So, What Can You Do
About It?
https://www.kernel.org/pub/linux/kernel/people/

paulmck/perfbook/perfbook.html

17/17 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT

https://www.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
https://www.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html

	Memory Ordering
	Memory Barrier

