
ECE 587 – Hardware/Software Co-Design
Lecture 06 Process-Based Models II

Professor Jia Wang
Department of Electrical and Computer Engineering

Illinois Institute of Technology

February 3, 2025

1/26 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Reading Assignment

▶ This lecture: 3.1.2, 3.2

▶ Next two lectures: Concurrency in Practice

2/26 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Outline

Synchronous Data Flow (SDF)

Data Flow Graphs

System Design Languages

3/26 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Synchronous Data Flow (SDF)

▶ Actor model restricts how processes execute.
▶ Further restriction on how actors consume and product

tokens.
▶ Fire (execute) an actor: actors only perform substantial

amount of computation only when enough tokens are received.
▶ Once fired, an actor will generate enough tokens.
▶ How many are enough?

▶ Synchronous Data Flow (SDF)
▶ Each actor consumes and produces a predefined number of

tokens per channel, per firing.
▶ The numbers could be different for different channels, but

remain fixed for a particular channel and read/write operation.

4/26 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



SDF Example

(Gajski et al., 2009)

5/26 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Actor Scheduling to Prevent Deadlocks

▶ Can we prevent deadlock?
▶ Not for all SDFs, but we can decide if there will be a deadlock.
▶ Deadlock only happens when there is not enough tokens on

certain arcs.

▶ Assume initially there are enough tokens on each arc.
▶ So we may freely fire any actor for certain amount of times.

▶ If we can find a scheduling to fire the actors such that the
number of tokens will remain unchanged afterwards, then we
know there is no deadlock if we repeat such scheduling.
▶ Also known as the relative execution rates of actors.

6/26 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Determine the Relative Execution Rates I

(Gajski et al., 2009)

▶ Assigning each process an unknown representing the times the
actor should be fired.

▶ For each arc, writing down an equation requiring the number
of produced tokens to be equal to the consumed tokens.

7/26 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Determine the Relative Execution Rates II

(Gajski et al., 2009)

2A = B

2B = C

C = 2D

2D = 2B

▶ Now you have a system of linear equations.
▶ Though there are usually more equations (number of arcs)

than unknowns (number of nodes).
▶ 0 is a solution but we are looking for a solution other than that.

8/26 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Determine the Relative Execution Rates III

2A = B

2B = C

C = 2D

2D = 2B

▶ A = 1,B = 2,C = 4,D = 2
▶ If no such solution exists, we know deadlock or overflow

eventually happens.
▶ Otherwise, we can find a minimum integer solution as the

relative execution rates.

▶ Assumptions: for each channel
▶ There will be enough tokens initially.
▶ There will be enough buffer to hold all intermediate tokens.
▶ But how many are enough?

9/26 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Implementation Considerations for SDF

▶ Our scheduling as relative execution rates doesn’t specify the
order to fire those actors.
▶ This leaves great flexibility in determining an order of firing.

▶ Different orders may require different resources to complete
one round of firings.
▶ Number of initial tokens on each arc
▶ Sizes of the queues

▶ Tools may help you and it could even be possible to share the
memory for queues.

10/26 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



SDF Scheduling Example I

▶ Consider a simple repeating schedule ’abbccccdd’
▶ Recall A = 1,B = 2,C = 4,D = 2

▶ After firing ’a’,

a
2

b
1 2

2

c
1

1

d

2

2

OO

OOOO

▶ To fire ’bb’, we need 4 initial tokens on the d to b edge.

11/26 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



SDF Scheduling Example I (Cont.)

▶ After firing ’bb’,

a
2

b
1 2

2

c
1

1

d

2

2

OO OOOO

OOOO

12/26 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



SDF Scheduling Example I (Cont.)

▶ After firing ’cccc’,

a
2

b
1 2

2

c
1

1

d

2

2

OO OOOO

OOOO OOOO

13/26 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



SDF Scheduling Example I (Done)

▶ After firing ’dd’,

a
2

b
1 2

2

c
1

1

d

2

2

OO OOOO

OOOO OOOO

▶ We have returned to the initial setting where there are 4
tokens on the d to b edge.

▶ We need storage to store 14 tokens.

14/26 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



SDF Scheduling Example II

▶ What if the schedule is ’abccdbccd’?
▶ To fire ’b’ after ’a’, we need 2 initial tokens on the d to b edge.

▶ After firing ’abccd’,

a
2

b
1 2

2

c
1

1

d

2

2

O O OO

OO OO

15/26 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



SDF Scheduling Example II (Done)

▶ After firing ’bccd’,

a
2

b
1 2

2

c
1

1

d

2

2

OO OO

OO OO

▶ We have returned to the initial setting where there are 2
tokens on the d to b edge.

▶ We need storage to store 8 tokens.

▶ This is a better schedule!

16/26 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Outline

Synchronous Data Flow (SDF)

Data Flow Graphs

System Design Languages

17/26 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Data Flow Graphs (DFG)

▶ Could be treated as a special SDF
▶ Each actor consumes/produces 1 token from every input/to

every output.
▶ No cycle: actors are fired in their topological order once to

compute a set of output from a set of input.

▶ A set of statements without branches can be transformed into
a DFG.
▶ E.g. a basic block (BB)
▶ Except inputs and outputs, variables may be eliminated.
▶ Ordering of operations may be relaxed.
▶ Further compiling to certain target instruction set could be

viewed as a scheduling of the processes/actors on a single
processor.

▶ The actors should match your desired level of abstraction.

▶ Parallelism can be exploited by firing the actors according to
their levels.

18/26 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Example Statements

inputs: u, w, y, dx, i

outputs: up, wp, yp

temporary variables: u1, u2, u3, u4, u5, u6, y1

u1 = u *dx;

u2 = 5 *w;

u3 = 3 *y;

y1 = i *dx;

wp = w +dx;

u4 = u1*u2;

u5 = dx*u3;

yp = y +y1;

u6 = u -u4;

up = u6-u5;

▶ Such code may appear in a loop that need to be optimized.
▶ u, w, y may be updated to up, wp, yp respectively at the

end of the iteration.

▶ Static Single Assignment Form (SSA): each variable is
assigned once since othrewise they can be renamed.

19/26 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



DFG Example

*

u dx

*

5 w

*

3 y

*

i

+

wp

*
u1 u2

u4

u3

*

dx

y1

dx

yp

+-
u6

-

up

dx

u5

20/26 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Outline

Synchronous Data Flow (SDF)

Data Flow Graphs

System Design Languages

21/26 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



System Design Languages

▶ Specify system functionality with minimum design effort by
capturing models.
▶ Allow further automated processings/transformations, e.g.

simulation/debugging, synthesis/optimization, verification.
▶ Natural languages are not a good choice as they are

ambiguous and incomplete.

▶ What language is ideal for system design?
▶ Other relevant questions

▶ Why there are so many languages?
▶ Which one should I learn?
▶ How should I learn a particular language?

22/26 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Typical Languages

▶ C/C++/Java
▶ The core language supports sequential programs and various

abstraction mechanisms, e.g. OOP, for user-defined libraries.
▶ User-defined libraries cover many application domains.

▶ Structural Verilog/VHDL
▶ Support mapping to hardware via a structural model, i.e.

components and interconnects.
▶ Primarily targeted at RTL designs.
▶ Extensions support behavioral models, i.e. processes and

sequential programs, though results when synthesized into
hardware may be inferior.

▶ Matlab
▶ For matrix computations.
▶ Sequential programs are also supported, though the

performance will be inferior if the computation could be
written in matrix forms.

23/26 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Domain Specific Languages

▶ Languages are created to
▶ Solve problems in specific application domains.
▶ Provide abstractions so that users can adopt them for specific

application domains via building their own libraries.

▶ Application domains are distinguished by their respective
models.

▶ To learn a new language or a new library written in a language
you are familiar with,
▶ Learn the models specific to the associated application domain.
▶ Learn how to capture the models using the language/library.

24/26 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Choose a System Design Language

▶ Ideal system design languages should support models used to
specify the whole system at all abstraction levels.
▶ Can we design one?

▶ Practical considerations
▶ Labor force: can you motivate the designers to learn this new

language?
▶ Legacy code: can you persuade the industry to move their

code to this new language?

▶ Practical system design languages
▶ Extend existing languages to support system designs
▶ Different trade-offs leads to different choices of base languages.
▶ Modern tools can support inter-operation of multiple system

design languages.

25/26 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Summary

▶ By restricting how processes execute and how communications
happen, we may obtain models that guarantee no-deadlock
while still flexible enough for different implementations.

▶ Sequential programs are state-based, though we may extract
parallelism through its data flow.

▶ There are no ideal system design languages.

26/26 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT


	Synchronous Data Flow (SDF)
	Data Flow Graphs
	System Design Languages

