
ECE 587 – Hardware/Software Co-Design
Lecture 04 State-Based Models II

Professor Jia Wang
Department of Electrical and Computer Engineering

Illinois Institute of Technology

January 27, 2025

1/20 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Reading Assignment

▶ This lecture: 3.1.2

▶ Next lecture: 3.1.1

2/20 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Outline

Control-Data Flow Graph

Finite State Machine with Data

3/20 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Sequential Programs

▶ The most intuitive model to specify functionality.
▶ Sequential programs are actually state-based.

▶ Variables and execution flow together determine the state.
▶ (If we assume bounded dymanic memory allocations and

recursions)

▶ Can we translate sequential programs directly into hardware
implementations?
▶ Known as behavioral synthesis or high-level synthesis.

4/20 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Elements of Sequential Programs

▶ Variables
▶ An abstraction of memory
▶ Associated with types to explain the meaning of bits

▶ Execution flow: imperative
▶ Statements specify what to do.
▶ Statements are ordered for execution.
▶ Control constructs (if, for, while, etc.) may change the flow

but fundamentally they are all variants of branches.

▶ Functions and object-oriented programming (OOP) provide
additional abstractions to ensure conciseness and correctness.
▶ Essentially they are still executed sequentially.

5/20 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Reason with Sequential Programs

▶ In its textual form, it’s hard to reason with sequential
programs.
▶ Either by designers or automated tools.

▶ Compiling to certain target instruction set
▶ While a program in assembly language can be easily

manipulated by automated tools, too many implementation
details are included, e.g. number of registers.

▶ We need some intermediate representations that describe the
functionality independent of the target instruction set.

▶ Control-Data Flow Graph (CDFG)
▶ A specialized type of flow chart.

6/20 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Control-Data Flow Graph (CDFG)

▶ Two kinds of blocks representing computations
▶ Basic block (BB): rectangular shape
▶ Decision block: diamond shape

▶ Blocks are connected by (directed) arcs representing the steps
in your program.
▶ Each basic block should lead to exactly one block.
▶ Each decision block can lead to multiple blocks depending on

the outcome of the computation in the block.

▶ To generate the CDFG,
▶ The program is decomposed into sets of statements without

branches, and branches themselves.
▶ Some branch may involve complex computations. In such case,

we would assume the computations are moved to before the
actual branch.

▶ Each set of statements is represented by a BB.
▶ Each branch is represented by a decision block.

7/20 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Example: Sequential Multiplication

▶ Input
▶ A, B: two 32-bit binary number
▶ start: 1-bit, indicate A and B will be available for a new job

▶ Output
▶ Out: one 32-bit binary number for the product
▶ done: 1-bit, indicate Out is ready from the previous job and

the multiplier is idle for the current cycle

▶ Timing sequence
▶ The multiplier will start a job if it is idle and start = 1. It will

no longer be idle the next cycle.
▶ A and B will be available when start = 1 and in the next few

clock cycles.
▶ The multiplier will indicate the product is ready at Out by

turning done to 1. It will go idle the next cycle.
▶ This is the usual way to interface with hardware/chip if you

don’t know when the computation will finish.

8/20 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



CDFG for Sequential Multiplication

9/20 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Outline

Control-Data Flow Graph

Finite State Machine with Data

10/20 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Finite State Machine with Data (FSMD)

▶ An extension of FSM that allows to include additional
variables into the system
▶ The functions f and h now not only depend on these variables

but can also update them.
▶ RTL operations can be included for convenience.

▶ For many systems, FSMD helps to separate states that are
data from states that are control signals, making the overall
system easy to understand.

▶ Similar to FSM, FSMD can be directly translated to hardware
implementations.
▶ Controller+Datapath

11/20 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



General FSMD Architecture

(Gajski et al., 2009)

12/20 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



From CDFG to FSMD

▶ One can map from CDFG to FSMD by representing each
block with a state and each arc with a state transition.

▶ Essentially, your design is still a FSM where the state bits are
decomposed into two groups.
▶ Variables: these bits are handled by the RTL operations
▶ Controller state: these bits represent the state of the controller.

13/20 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



FSMD for Sequential Multiplication

14/20 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Multiplier Architecture

15/20 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Datapath Implementation

▶ Implement all RTL operations.
▶ Use mux’s to route operands/results.
▶ Decide all control signals later in controller design.

16/20 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Controller Implementation: Transition Equation

▶ There are 6 states: denote by S , 3 bits.

▶ State transitions
S(t) start b zero b odd S(t + 1)

0 0 X X 0
0 1 X X 1
1 X X X 2

2 X 0 X 3
2 X 1 X 0
3 X X 1 4
3 X X 0 5

4 X X X 5
5 X X X 2

6 X X X 0
7 X X X 0
▶ Pay attention to the state 6 and 7: we have to reset them

17/20 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Controller Implementation: Output Equation

S(t) done p load p sel a load a sel b load b sel

0 1 0 X 0 X 0 X
1 0 1 0 1 0 1 0

2 0 0 X 0 X 0 X
3 0 0 X 0 X 0 X

4 0 1 1 0 X 0 X
5 0 0 X 1 1 1 1

6 0 X X X X X X
7 0 X X X X X X

▶ For the state 6 and 7, we use done= 0 to indicate the
multiplier is not ready yet.

▶ Since a load = b load and a sel = b sel , we can share them
to save more cost.

18/20 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Practical Considerations

▶ Tools could further optimize a CDFG by combining blocks or
simulating the FSMD in a symbolic way to unroll loops,
forming a larger BB that may contain better parallelism.

▶ Multiple states are necessary for large BBs in order to reduce
clock periods.

▶ Datapath components may be reused and/or pipelined.

▶ These are the concerns of high-level synthesis that we will
discuss later in the semester.

19/20 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Summary and Discussions

▶ Sequential programs are modeled by CDFG, which can be
translated into FSMD, leading to hardware implementations.

▶ Popularity of sequential programs comes from
▶ Fully ordered semantics are easy to reason with.
▶ Only a small portion of the state bits are changed per

statement, leading to efficient implementations on
controller+datapath+memory architectures.

▶ Complexity can be reduced at even higher abstraction levels
like object-oriented programming.

20/20 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT


	Control-Data Flow Graph
	Finite State Machine with Data

