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Reading Assignment

▶ This lecture: 3.1, 3.1.2

▶ Next lecture: 3.1.2
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Models of Computation

▶ Any non-trivial functionality must involve some kind of
computation.

▶ It is beneficial to specify the functionality just at the
abstraction level of the computation.
▶ It’s intuitive.
▶ Computations are behavioral. No implementation detail is

necessary.
▶ Computations are based on mathematics. There may exist

tools to automate the remaining design process.

▶ Models of Computation (MoCs)
▶ Serve as basis to reason about computation/constraints
▶ Utilize formal language, e.g. certain kind of mathematics
▶ May have different supported features, complexity, and

expressive power.
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Common MoCs

▶ MoCs define computations by specifying when to perform
operations.
▶ The time here is not absolute time but relative ordering.
▶ So ultimately it depends on how synchronizations are

employed.

▶ Fully synchronized model: Finite State Machine

▶ Fully ordered without synchronization: Sequential Programs

▶ No synchronization at all: Dataflow

▶ We will first focus on FSM and move to other models in the
next few weeks.
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Finite-State Machine (FSM)

< S , I ,O, f , h >

▶ Set of states S

▶ Set of input symbols I

▶ Set of output symbols O

▶ Next-state function f : S × I → S

▶ Output function h : S × I → O

▶ Some systems may specify initial states and/or final states
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What is not specified?

▶ Encoding of states and input/output symbols in HW/SW
▶ This condition will sometimes be relaxed so one can handle

extremely large systems.

▶ Implementation of f and h in HW/SW
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Representations of FSM

▶ Graph representation
▶ States as vertices
▶ State transitions as edges (annotated with inputs/outputs)
▶ Intuitive, but if there are too many possible states, it becomes

unmanageable.

▶ Functional representation
▶ If one can efficiently specify f and h, then the FSM can be

simulated from any initial state and a trace of inputs, fulfilling
most computational tasks.

▶ Can handle extremely large systems
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Encodings

▶ Since a FSM has a finite number of possible states, one can
represent, or encode, a state using a fixed number of bits.
▶ E.g. if there are 16 possible states, a 4-bit encoding can be

applied.

▶ Similarly you can encode inputs and outputs.

▶ Under such encodings, the functions f and h become boolean
functions.
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FSM vs. Register Transfer Level (RTL)

▶ That’s exactly how RTL is defined.
▶ Just change the state bits to registers

▶ The key here is encoding.
▶ Encoding enables us to specify extremely large FSMs.
▶ Different encodings may lead to specifications with different

complexity, though for system design we prefer to use the most
intuitive one.

▶ We will still distinguish functional representations of FSM
from RTL as they have different purposes.
▶ Though mathematically there is no difference.
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Implement FSMs

▶ Hardware: as Synchronous Circuits
▶ Utilize the connection between functional representation and

RTL
▶ Exactly one state transition happens per clock cycle.
▶ High speed/low power/energy consumption
▶ Usually known as cycle-accurate behavior

▶ Software: follow either graph or functional representations
▶ Tedious, better to have tools to generate code
▶ Not efficient in both time and power
▶ But is a very powerful architecture to build complex software

that needs to react to external events, e.g. networking and
graphical user interface.
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Input Validation

▶ Consider an application that requires to validate user inputed
numbers
▶ Assume the input is a character string
▶ End of string must be enter.

▶ A valid integer
▶ If the first character is not a digit, then it must be either + or

−.
▶ Except the first character and the ending enter, all characters

are digits.
▶ The most significant digit must not be 0.
▶ The integer may contain arbitrary number of digits.

▶ Additional tasks
▶ Deal with floating-point numbers
▶ Extract the number during validation
▶ Implement the designs in a programming language.

▶ How to approach this or similar problems?
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A Simple FSM

▶ How does it work?
▶ Starting from S0
▶ Process exactly one character per transition.

▶ This simple example accepts numbers like 1.2, 4.5, but not 11
or 1.21.

15/19 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



A More Complex FSM

▶ Build a FSM to recognize integers.
▶ Extend it to handle floating-point numbers.
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Extract Numbers

▶ Focus on integers but make it easy to extend our solution to
floating-point numbers etc.
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Software Implementation

enum {S0, S1, ..., OK, FAIL};

int state = S0, sign = 1, num = 0;

while ((S0 != OK) && (S0 != FAIL)) {

int next_state = state; // assume state remain the same by default

int ch = read_one_input();

if (state == S0) {

if (ch == ’-’) {

next_state = S1; sign = -1;

} else if (isdigit(ch)) {

next_state = S1; num = ch-’0’;

} ...

} else if (state == S1) {

} ...

state = next_state;

}

num *= sign;

▶ Make use of a single loop to drive the state transitions.

▶ Use two levels of branches to handle combinations of current
state and input.

▶ It can handle any FSM no matter how complicated it is.
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Discussions

▶ From the FSM model, it will be much easier for the designers
to utilize tools at hand to implement the validation as either
hardware or software.

▶ Such problems are special cases of Regular Expressions.
▶ It is used almost everywhere when text is processed.
▶ Many places require to run it very efficiently, e.g. to filter

certain information from the network at realtime.

▶ Regular expressions can be modeled by a special kind of FSMs
called nondeterministic FSM.
▶ There is a mapping from graph representation of

nondeterministic FSM to RTL, which enable one to implement
it quite efficiently in hardware.

▶ The challenge in hardware implementation is reconfigurability
without much overhead.

▶ Software implementations are based on the same idea but are
much more awkward.
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