
ECE 587 – Hardware/Software Co-Design
Lecture 02 Abstraction Levels and Models

Professor Jia Wang
Department of Electrical and Computer Engineering

Illinois Institute of Technology

January 15, 2025

1/23 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Reading Assignment

▶ This lecture: 1, 2

▶ Next lecture: 3.1

2/23 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Outline

System Design Challenges

Models

An Example Design

3/23 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



The Productivity Gap

▶ System complexity increases almost exponentially
▶ Software: more lines of code
▶ Hardware: more transistors to use

▶ Designer’s ability increases slowly
▶ How many components can you manage in your mind?

▶ There is a huge gap between what is available for us to design
and what we can manage to design
▶ Increasing team size is not always successful according to

software engineering practices, especially when robustness and
reliability are of concern.

▶ Commonly accepted solution: raise the level of abstraction in
the design process, e.g. hierarchical designs.

▶ Can we close the gap with large language models?

4/23 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Abstraction Levels

▶ Abstraction helps to hide details, e.g.
▶ Logic gates vs. transistors for hardware design
▶ Reasonings are easier and more relevant at the higher

abstraction level (logic gates) using boolean logic than at the
lower one (transistors) using voltages and currents.

▶ There are less components at the higher abstraction level.

▶ To close the productivity gap, it is desired to design the
system at higher abstraction levels and not to provide any
lower level detail at all.
▶ Designers provide specifications (descriptions at higher

abstraction levels).
▶ Design time is reduced by applying design automation that

synthesizes implementations (details at lower abstraction
levels).

▶ Avoid error prone manual design to improve robustness and
reliability

5/23 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



More about Abstraction Levels

▶ How to define an abstraction level?
▶ Designers should have consensus on the definition to facilitate

communications, e.g. what are logic gates.
▶ The definition should involve some kind of mathematics to

make automatic synthesis possible, e.g. boolean logic.

▶ At what abstraction level should designers work?
▶ Designers should be able to reason about the system very

effectively at such level, as this will help to
▶ Reduce design time by ignoring unnecessary details, e.g. a

logic gate can be used directly without any understanding on
its implementation.

▶ Improve design quality by eliminating chances to make
mistakes, e.g. you will never implement the logic gate the
wrong way.

6/23 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Outline

System Design Challenges

Models

An Example Design

7/23 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Models

▶ To specify a system at certain abstraction levels, sufficient
details are needed to predict system behavior with absolute
precision.

▶ An intuitive way to specify a system is to specify its
subsystems and their interactions.
▶ E.g. hierarchical design

▶ Model: defining an abstraction level by defining a method for
decomposition
▶ Types of the subsystems
▶ Rules for composing them into the system

8/23 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Considerations for Models

▶ No ambiguity and complete
▶ Help to distinguish abstraction levels with subtle differences

▶ Make reasonings about the system easier
▶ Models come from experiences of expert designers.
▶ Modifying a subsystem will also become easier.

▶ Make communications easier
▶ System design is a team work.

9/23 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Examples

▶ Logic gates can actually be represented at three abstraction
levels.

▶ Register-transfer level (RTL)
▶ Boolean expressions consisting of literals and logic operators

▶ Netlist
▶ Logic gates and interconnects

▶ Standard-cell based designs
▶ Placement of standard cells and routings of wires

▶ The above three models are also examples of a typical
classification of models.

10/23 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Typical Classification of Models

▶ Behavioral model
▶ A blackbox with description of functionality, i.e. input/output

relationship
▶ Implementation, i.e. how to obtain output from input, is not

specified

▶ Structural model
▶ An implementation of interconnected components
▶ Functionality is not specified explicitly

▶ Physical model
▶ Specify the physical characteristics of components and

interconnects
▶ Dimensionality and placement

▶ From the perspective of models, modern ASIC design can be
summarized as: RTL (behavioral) → Netlist (structural) →
standard cells (physical)

11/23 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Other Examples of Models

▶ Finite state machine
▶ Pretty much the synonym of RTL for hardware designs

▶ Sequential program
▶ Supported by most programming languages

▶ Dataflow
▶ Enable parallelism, e.g. MapReduce

▶ It is usually necessary to extend and to compose existing
models to specify a complex system.

▶ It is usually more rewarding to reason complex functionalities
with models instead of separated software and hardware
implementaions.

12/23 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



From Models to System Specifications

▶ Models are somewhat conceptual
▶ In designers’ mind
▶ On pieces of scratching paper

▶ Models need to be captured for further processings
▶ Especially for design automation tools, e.g. for synthesis and

verification

▶ Specification languages
▶ A formal way to capture models
▶ A model can be captured in many different languages
▶ A language can capture many different models

13/23 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Natural Languages v.s. Formal Languages

▶ Natural languages
▶ Ambiguous: even native speakers may have different

explanations
▶ Incomplete: cumbersome to elaborate all possible behaviors

▶ Formal languages
▶ Based on math: everyone should understand
▶ No ambiguity and complete

▶ Training is required to use both kind of languages effectively.

14/23 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Outline

System Design Challenges

Models

An Example Design

15/23 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



A System for Summation

Let’s design a system to perform summation.

▶ What appears in your mind? An adder?

16/23 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Functional Specification

▶ Mathematical model:
Input: n numbers a1, a2, . . ., an
Output:

∑n
i=1 ai

▶ More details are necessary to incorporate such model into a
system
▶ What is n?
▶ What is the type of the numbers?
▶ What if overflow/underflow happens?

▶ Assumptions
▶ 16 32-bit integers
▶ Ignore overflow/underflow

▶ Now the model can be used for simulation without knowing
anything about implementation.

17/23 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Design Constraints

▶ Latency: complete a summation in 8ns

▶ Throughput: complete 1, 000, 000, 000 summations per second

18/23 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Rough HW/SW Partitioning

▶ Hardware
▶ Need at least one two-input adder

▶ Software
▶ Coordinate hardware to complete summation by adding two

numbers a time
▶ If a higher precision is required later, software can be updated

19/23 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Design Space Exploration I

▶ Assume adders that can add two 32-bit integers in 1ns are
available

▶ Sequential program
▶ Accumulator: 1 adder and 1 32-bit register
▶ Smallest size

▶ What is the latency and the throughput?

20/23 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Design Space Exploration II

▶ Dataflow: a model to capture complex computations.
▶ 15 adders connected in series
▶ 15 adders connected into a tree

▶ What are their latency and throughput?
▶ Can you easily change your design to meet those constraints?

21/23 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Design Space Exploration III

▶ What if other adders are available?
▶ Note that until now, we haven’t talked about any specific

adder design, e.g. carry-ripple and carry-lookahead.
▶ We could also use carry-save adders.

▶ Which design will have the minimum cost while still satisfying
the performance constraints?

▶ What if weighted summations are required?
▶ What about weights that need to be reconfigurable but

otherwise remain constant during computation?

22/23 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT



Summary

▶ Models define abstraction levels.

▶ Choose proper models increases designer’s productivity.

23/23 ECE 587 – Hardware/Software Co-Design, Dept. of ECE, IIT


	System Design Challenges
	Models
	An Example Design

