
ECE 473/573
Cloud Computing and Cloud Native Systems

Lecture 27 Consensus

Professor Jia Wang
Department of Electrical and Computer Engineering

Illinois Institute of Technology

November 25, 2024

1/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Outline

Consensus

Paxos

2/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Reading Assignment

▶ This lecture: Consensus

3/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Outline

Consensus

Paxos

4/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Consensus

▶ Consensus: how can multiple parties reach agreement?
▶ E.g. to ensure there is a single branch for data management.
▶ Assume some parties and communications could be faulty.
▶ A fundamental problem of distributed computing and security.

▶ If arbitrary faulty behavior is allowed, then one must consider
possible attacks by participating parties.

▶ An example: each party presents a value of 0 or 1, and
together they want to agree on the majority.
▶ What faulty behavior can you think of?

5/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



The Byzantine Generals Problem

▶ A recast of the previous example by Lamport et al. 1982.
▶ Assume arbitrary faulty behavior.
▶ Not related to any historical events. But in a more realistic

setting for people to reason with possible attacks.
▶ A.k.a. Byzantine Fault Tolerance (BFT)

▶ There is a group of Byzantine generals.
▶ Each commands a division of army encircling an enemy city.
▶ The generals individually decide if they should attack or not.
▶ Together they vote and follow the majority.

▶ We only care whether the consensus is reached or not – we
don’t care if they actually attack or not.

6/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Traitors

▶ However, some of the generals are traitors.
▶ Traitors do whatever they want.
▶ Traitors may collude.

▶ The objective of the traitors is to break consensus.
▶ E.g. if Alice and Bob are loyal generals and Alice votes yes

while Bob votes no, then the traitor Oscar can trick them by
sending a vote of yes to Alice and a vote of no to Bob.

▶ Protocol design: a protocol all loyal generals follow.
▶ So that they will reach a common decision after sending each

other many messages, usually in rounds.
▶ Assume there are at least 2 loyal generals, how many traitors

could there be at most?

7/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Some Results

▶ If multiple rounds are allowed, for 3m + 1 generals, there is a
protocol to cope with at most m traitors.
▶ No protocol can cope with more traitors, e.g. 1 in 3 as our

Alice/Bob/Oscar example.

▶ With digital signatures, a protocol runs m + 1 rounds to cope
with at most m traitors among any number of generals.

▶ Limitations
▶ Not efficient enough for distributed computing because the

need of multiple rounds of communications.
▶ If there are unlimited number of traitors, none of the above

protocols is secure.
▶ More complex protocols exist, mostly developed for use in

cryptocurrencies, as they are still quite costly.

▶ Can we do better if only certain faulty behaviors need to be
addressed, e.g. for servers that simply fail and restart?

8/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Outline

Consensus

Paxos

9/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Paxos

▶ A consensus protocol first described by Lamport in 1990.
▶ A known number of parties follow protocols faithfully, though

messages could be lost, delayed, repeated, or reordered.
▶ Not related to any historical locations or events.

▶ A basic (one-shot) Paxos solves a single consensus problem.
▶ A multi-Paxos repeatedly executes basic Paxos to implement

a replicated state machine.
▶ So all replicas use the same sequence of state transitions.
▶ Used by many cloud services that need to maintain consistency

when servers and network fail.

10/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Basic Paxos

▶ Participating parties are processes.
▶ Processes will trust each other’s decisions and faulty processes

can be treated as faults in message communications.

▶ Each process will take any among the three roles
▶ Proposers: propose candidates of the consensus value, e.g. a

state transition, and make a decision on the value after
communicating with accepters.

▶ Accepters: vote on which among proposed candidates should
be accepted as the consensus value, and record decisions from
proposers.

▶ Learners: observe the decision making process to learn the
consensus value.

11/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Proposer and Accepter Actions

1. To start, proposer p sends prepare(r) to all accepters.
▶ r needs to be unique.
▶ Accepter maintains largest r received as rack , as well as ra and

va as accepted decision from proposers.
▶ Initialize rack and ra to −∞ and va to nil .

2. Accepter receiving prepare(r) from p:
▶ If r > max(rack , ra), reply ack(r , va, ra) and update rack to r .
▶ Reject/do nothing otherwise.

3. Proposer receiving ack(r , va, ra) from a majority of accepters:
▶ If one of the va is not nil , find the va with the largest ra and

send accept!(r , va) to all accepters.
▶ Otherwise, proposer send accept!(r , v) to all accepters where

v is the proposed candidate.

4. Accepter receiving accept!(r , v):
▶ If r ≥ max(rack , ra), send accepted(r , v) to all learners, and

update (ra, va) to (r , v) if r > ra.
▶ Reject/do nothing otherwise.

12/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Learner Action

5.a Learners learn the consensus value v when receiving
accepted(r , v) from majority of accepters.

5.b Learners may query accepters for their (ra, va) if
accepted(r , v) messages are lost.

5.c Learners may query other learners for the consensus value v .

▶ Is it possible for those accepted(r , v) and (ra, va) to have
different v ’s?

13/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Example: A Single Proposer

1. Proposer sends prepare(100)

2. All accepters reply ack(100, nil ,−∞)
▶ Update rack to 100. (ra, va) remain (−∞, nil).

3. If majority of replies arrive, proposer sends accept!(100, yes).

4. Accepters send accepted(100, yes) to learners.
▶ Update (ra, va) to (100, yes).

5. Learners then learn ”yes” from majority of accepters.
▶ Lost and delayed messages.

▶ Before Step 3, if proposer receives less than majority of replies,
system will not make any progress.

▶ If less than majority of accepters receive accept!(100, yes),
system will not make any progress.

▶ Using a timer, either proposer decides to restart the process
from Step 1, or learners notify (or act as) proposer to do so.

14/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Example: Proposer Restart

1. Proposer sends prepare(200)
▶ Use an increasing r to make progress.

2. Accepters reply ack(200, nil ,−∞) or ack(200, yes, 100)
▶ Depend on whether proposer sends or they receive

accept!(100, yes) from the first time.
▶ Update rack to 200. (ra, va) unchanged.

3. If majority of replies arrive,
▶ With an ack(200, yes, 100), proposer sends accept!(200, yes)
▶ With all ack(200, nil ,−∞), proposer may change mind and

sends accept!(200, no).

4. All accepters receive the same accept! message.
▶ Notify learners and update (ra, va) accordingly.

▶ Lost and delayed message accept!
▶ Only matter for accept!(200, no) as some accepters may have

(ra, va) = (100, yes) while others have (200, no) or (−∞, nil).
▶ Will learners learn different values?

15/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Example: Consensus

▶ Possible accepter state (ra, va)
▶ (200, no): those received the second accept!
▶ (100, yes): those missed the second accept!
▶ (−∞, nil): those missed the first accept!

▶ The choice of ”no” indicates there is majority of accepters
replying ack(200, nil ,−∞) in Step 2.

▶ Less than majority of accepters have (100, yes) from the first
time and learners will not learn ”yes”.

5. Learners can only learn ”no” or proposer restarts the process
again if many messages are lost.

16/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Repeated or Reordered Messages

▶ Reordered prepare(r), accept!(r , v), and accepted(r , v)
messages are rejected based on r .
▶ r need to be unique.
▶ Proposer need to use increaing r ’s to make progress.

▶ Repeated prepare(r) messages are rejected.

▶ Repeated accept!(r , v) and accepted(r , v) messages are
idempotent.

▶ Proposer keeps records to reject repeated or reordered ack
messages.

17/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Multiple Proposers

▶ Same as if there is only one proposer that,
▶ Restart and change mind frequently.
▶ Forget to use an increasing r when restarting.
▶ With lost, delayed, and reordered messages.

▶ It is possible for multiple proposers to prevent each one from
making progress.
▶ An exponential backoff strategy may be used by proposers to

ensure progress.

18/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Summary

▶ Consensus protocols ensure parties to reach agreements
despite failures in the system.

▶ Different assumptions on failures result in very different
consensus protocols designs.

19/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT


	Consensus
	Paxos

