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Reading Assignment

» This lecture: Resilient Distributed Datasets: A Fault-Tolerant
Abstraction for In-Memory Cluster Computing
http://people.csail.mit.edu/matei/papers/2012/
nsdi_spark.pdf

» This and next lecture: Cloud Security
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RDD Representation

» Each RDD consists of

» Partitions as atomic piece of dataset.

» Dependencies to parent RDDs.

» A function to compute it from parent RDDs.

» Metadata of partitioning scheme and data placement.

» Dependencies define communication needs.
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» Narrow dependency: each partition of the parent RDD is used
by at most one partition of the child RDD, e.g. map and filter.

» Wide dependency: multiple child partitions may depend on a
single partition of the parent RDD, e.g. join and groupByKey.

» Narrow dependencies allow for pipelined execution on a single
node, elimating communication and simplifying fault recovery.

» Wide dependencies require communications like MapReduce,
and need complete re-execution for lost partitions.
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Job Scheduling
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Since transformations are lazy, scheduling is trigger by actions.
The scheduler will build a plan to compute the RDDs.

» From RDD'’s lineage graph, as a directed acyclic graph (DAG)
where vertices are partitions and edges are transformations.

» The DAG is optimized by grouping vertices into stages, where
within each stage transformations are merged, and no
intermediate partitions are stored or communicated.

The scheduler then decides what partitions are available and
schedules tasks to compute missing partitions.
» Follow the order of DAG to only schedule a task when all its
input partitions become available.
» Consider locality of data either in-memory or on-disk.
Rerun failed task, persist RDDs to local drives if they require
expensive communications to compute.
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Memory Management

» RDD persistence options
» In-memory storage as deserialized Java objects: fastest
performance but large overhead in memory usage.
P In-memory storage as serialized data: efficient memory usage.
» On-disk storage: slowest, for RDDs too large to fit into
memory, or too costly to recompute, usually due to expensive
communication requirements from wide dependencies.

» Apply LRU policy to evict RDDs to make memory available.
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Checkpointing
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While one can always recompute RDDs given their lineages, it
is not efficient to do so for long lineage chains.

» Specifically for wide dependencies within that require expensive
communications.
Checkpointing: store RDDs as output from wide dependencies
on long lineage chains into stable storage.

» Replicated as needed so no need to recompute if nodes fail.
» RDDs are read-only so they can be written out in the
background without impacting computation.

Should checkpointing be specified by users or automatically
decided?
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CIA: Basic Components of (Computer Cyber) Security

» A king need to send messages to a general fighting in a war.
» Confidentiality

» Only the king and the general can read the messages.
> Integrity

» The general should only accept messages sent by the king.
> Availability

» Some of the messages must be able to reach the general.
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Additional Security Services

» Nonrepudiation: sender can not deny creation of message.
» Can the general provide a proof to a third party that the
command is from the King?
» But who is the King?
» Authentication: who are you?
> A.k.a. entity/user authentication, or identification
» Within the context of computer cyber security, shall be built
on top of a nonrepudiation service (but usually is not!).

» Access control /authorization: decide who can do what.
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Symmetric Cryptography
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Fig. 1.5 Symmetric-key cryptosystem
(Paar and Pelzl)
» A mechanism for confidentiality
» plaintext x, ciphertext y, and the key k
> ¢(): encryption such that y = ex(x)
» d(): decryption such that x = di(y)
> “Symmetric”: both Alice and Bob know k.

» No “security by obscurity”: Oscar knows everything except k
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Hash Functions

message message digest

Alice was beginning to get very tired of
sitting by her sister on the bank,
and having nothing to do.
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Fig. 11.3 Principal input—output behavior of hash functions
(Paar and Pelzl)

» Input x: messages of arbitrary lengths
» Output z = h(x): message digest or hash, with fixed size.

» A strong hash function for use with cryptography prevents to
find x # x’ such that h(x) = h(x').
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Authenticated Encryption with Associated Data (AEAD)

» Symmetric ciphers along cannot guarantee integrity.

» With the secret, hash functions can be augmented into
message authentication code to validate integrity.

» Authenticated encryption combines the two to achieve both
confidentiality and integrity.
» Very tricky to implement them together securely.

» Use a well-defined AEAD algorithm like GCM, where software
packages and hardware accelerations are widely available.

» AEAD cannot provide nonrepudiation service.

» Neither Alice nor Bob can provide a proof that the message is
encrypted by the other because they both know the secret.
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Key Establishment

P To establishing a shared secret between two or more parties.
» Which could be used later for AEAD.

» How can we solve this problem without a shared secret to
begin with?
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Public-Key Cryptography
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Fig. 6.4 Basic protocol for public-key encryption
. . ] (Paar and Pelzl)
» Key pair k: a public ky,p and a private (secret) kp,.

»> No one should be able to derive k, from kpyp.

» Alice only need to obtain Bob's k,,; before they could share
the secret x

» Such algorithms exist, e.g. RSA
» But how could Alice be sure that kg, is from Bob?
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Digital Signatures
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Fig. 10.1 Principle of digital signatures which involves signing and verifying a message
o (Paar and Pelzl)
» Nonrepudiation: no shared secret

»> Bob signs with his private key kp,.
> Alice verifies with Bob's public key kpyp.

» Such algorithms exist, e.g. to run RSA reversely.
» Still, how could Alice be sure that kp, is from Bob?
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Public Key Infrastructure (PKI)

> A service to connect public keys to physical identities.
» People, hosts, services, etc.
» Certificate Authority (CA): a trusted third-party.
» Make use of public-key cryptography: kpub, ca and kpr ca.
» For digital signatures only.
» Everyone knows kp,p ca to verify digital signatures from CA.
» But how?
» How Bob proves to Alice k. g is from Bob?

» Bob sends kpus g to CA and ask CA to sign (kpup,8, D).
» CA returns Bob his certificate:

Certg = ((kpub,B» IDB), Sigk,, cs(Kpub,B: IDB)).
»> Bob presents Alice Certg that Alice can verify with kyup ca.

» Authentication: in other words, Bob proves to Alice that he is
Bob, with the help from CA.
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Summary

| 2
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RDDs improve performance of distributed algorithms by
making better use of local memory and CPUs to save on
expensive disk and network 1/Os.

Public-key infrastructures combine symmetric cryptography
and public-key cryptography to establish secure
communication over insecure networks and to provide
authentication.
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