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Reading Assignment

▶ This lecture: Resilient Distributed Datasets: A Fault-Tolerant
Abstraction for In-Memory Cluster Computing
http://people.csail.mit.edu/matei/papers/2012/

nsdi_spark.pdf

▶ This and next lecture: Cloud Security
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RDD Representation

▶ Each RDD consists of
▶ Partitions as atomic piece of dataset.
▶ Dependencies to parent RDDs.
▶ A function to compute it from parent RDDs.
▶ Metadata of partitioning scheme and data placement.

▶ Dependencies define communication needs.
▶ Narrow dependency: each partition of the parent RDD is used

by at most one partition of the child RDD, e.g. map and filter.
▶ Wide dependency: multiple child partitions may depend on a

single partition of the parent RDD, e.g. join and groupByKey.
▶ Narrow dependencies allow for pipelined execution on a single

node, elimating communication and simplifying fault recovery.
▶ Wide dependencies require communications like MapReduce,

and need complete re-execution for lost partitions.

5/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Job Scheduling

▶ Since transformations are lazy, scheduling is trigger by actions.
▶ The scheduler will build a plan to compute the RDDs.

▶ From RDD’s lineage graph, as a directed acyclic graph (DAG)
where vertices are partitions and edges are transformations.

▶ The DAG is optimized by grouping vertices into stages, where
within each stage transformations are merged, and no
intermediate partitions are stored or communicated.

▶ The scheduler then decides what partitions are available and
schedules tasks to compute missing partitions.
▶ Follow the order of DAG to only schedule a task when all its

input partitions become available.
▶ Consider locality of data either in-memory or on-disk.

▶ Rerun failed task, persist RDDs to local drives if they require
expensive communications to compute.
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Memory Management

▶ RDD persistence options
▶ In-memory storage as deserialized Java objects: fastest

performance but large overhead in memory usage.
▶ In-memory storage as serialized data: efficient memory usage.
▶ On-disk storage: slowest, for RDDs too large to fit into

memory, or too costly to recompute, usually due to expensive
communication requirements from wide dependencies.

▶ Apply LRU policy to evict RDDs to make memory available.
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Checkpointing

▶ While one can always recompute RDDs given their lineages, it
is not efficient to do so for long lineage chains.
▶ Specifically for wide dependencies within that require expensive

communications.

▶ Checkpointing: store RDDs as output from wide dependencies
on long lineage chains into stable storage.
▶ Replicated as needed so no need to recompute if nodes fail.
▶ RDDs are read-only so they can be written out in the

background without impacting computation.

▶ Should checkpointing be specified by users or automatically
decided?
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CIA: Basic Components of (Computer Cyber) Security

▶ A king need to send messages to a general fighting in a war.
▶ Confidentiality

▶ Only the king and the general can read the messages.

▶ Integrity
▶ The general should only accept messages sent by the king.

▶ Availability
▶ Some of the messages must be able to reach the general.

10/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Additional Security Services

▶ Nonrepudiation: sender can not deny creation of message.
▶ Can the general provide a proof to a third party that the

command is from the King?
▶ But who is the King?

▶ Authentication: who are you?
▶ A.k.a. entity/user authentication, or identification
▶ Within the context of computer cyber security, shall be built

on top of a nonrepudiation service (but usually is not!).

▶ Access control/authorization: decide who can do what.
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Symmetric Cryptography

(Paar and Pelzl)
▶ A mechanism for confidentiality

▶ plaintext x , ciphertext y , and the key k
▶ e(): encryption such that y = ek(x)
▶ d(): decryption such that x = dk(y)
▶ “Symmetric”: both Alice and Bob know k .

▶ No “security by obscurity”: Oscar knows everything except k
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Hash Functions

(Paar and Pelzl)

▶ Input x : messages of arbitrary lengths

▶ Output z = h(x): message digest or hash, with fixed size.

▶ A strong hash function for use with cryptography prevents to
find x ̸= x ′ such that h(x) = h(x ′).
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Authenticated Encryption with Associated Data (AEAD)

▶ Symmetric ciphers along cannot guarantee integrity.

▶ With the secret, hash functions can be augmented into
message authentication code to validate integrity.

▶ Authenticated encryption combines the two to achieve both
confidentiality and integrity.

▶ Very tricky to implement them together securely.
▶ Use a well-defined AEAD algorithm like GCM, where software

packages and hardware accelerations are widely available.

▶ AEAD cannot provide nonrepudiation service.
▶ Neither Alice nor Bob can provide a proof that the message is

encrypted by the other because they both know the secret.
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Key Establishment

▶ To establishing a shared secret between two or more parties.
▶ Which could be used later for AEAD.

▶ How can we solve this problem without a shared secret to
begin with?
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Public-Key Cryptography

(Paar and Pelzl)
▶ Key pair k : a public kpub and a private (secret) kpr .

▶ No one should be able to derive kpr from kpub.

▶ Alice only need to obtain Bob’s kpub before they could share
the secret x

▶ Such algorithms exist, e.g. RSA

▶ But how could Alice be sure that kpub is from Bob?
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Digital Signatures

(Paar and Pelzl)
▶ Nonrepudiation: no shared secret

▶ Bob signs with his private key kpr .
▶ Alice verifies with Bob’s public key kpub.

▶ Such algorithms exist, e.g. to run RSA reversely.

▶ Still, how could Alice be sure that kpub is from Bob?
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Public Key Infrastructure (PKI)

▶ A service to connect public keys to physical identities.
▶ People, hosts, services, etc.

▶ Certificate Authority (CA): a trusted third-party.
▶ Make use of public-key cryptography: kpub,CA and kpr ,CA.
▶ For digital signatures only.

▶ Everyone knows kpub,CA to verify digital signatures from CA.
▶ But how?

▶ How Bob proves to Alice kpub,B is from Bob?
▶ Bob sends kpub,B to CA and ask CA to sign (kpub,B , IDB).
▶ CA returns Bob his certificate:

CertB = ((kpub,B , IDB), sigkpr,CA(kpub,B , IDB)).
▶ Bob presents Alice CertB that Alice can verify with kpub,CA.

▶ Authentication: in other words, Bob proves to Alice that he is
Bob, with the help from CA.
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Summary

▶ RDDs improve performance of distributed algorithms by
making better use of local memory and CPUs to save on
expensive disk and network I/Os.

▶ Public-key infrastructures combine symmetric cryptography
and public-key cryptography to establish secure
communication over insecure networks and to provide
authentication.
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