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Reading Assignment

» This and next lecture:
» MapReduce: Simplified Data Processing on Large Clusters

https://research.google/pubs/pub62/
» Resilient Distributed Datasets: A Fault-Tolerant Abstraction

for In-Memory Cluster Computing http://people.csail.
mit.edu/matei/papers/2012/nsdi_spark.pdf

» We will also introduce cryptography for cloud security next
lecture.
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Computing with MapReduce
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MapReduce Model

» A model to specify parallel algorithms.
» Consist of tasks that communicates with each other.

> A few types of tasks: input, map, combine, reduce, output.

» Communication is implicit: tasks communicate by exchanging
their inputs/outputs.
» Inputs/outputs are (key,value) pairs where key indicates the
destination and value is the payload.
» Pre-defined communication patterns: input — map —
combine — reduce — output.

» Simplify parallel programming on clusters.

» Easy to reason with pre-defined communication patterns.

» Usually the map and the reduce tasks are specified by users.

» Underlying implementations like Apache Hadoop provides
cluster management for tasks scheduling, data movement,
fault resilience, etc.
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Map Tasks

class Map_WordCount extends ... {
public void map(
LongWritable key, Text value,
OutputCollector<Text, IntWritable> output,
Reporter reporter) throws IOException {

String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {
output.collect(
new Text(tokenizer.nextToken()),
new IntWritable(1));

> A map task consume what an input task generate and outputs
pairs to combine tasks.

» Multiple map tasks running in parallel are able to consume
and generate a lot of data.
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Reduce Tasks

class Reduce_WordCount extends ... {
public void reduce(
Text key, Iterator<IntWritable> values,
OutputCollector<Text, IntWritable> output,
Reporter reporter) throws IOException {

int sum = O;
while (values.hasNext()) {
sum += values.next().get();

}
output.collect(key, new IntWritable(sum));

» Combine tasks group output pairs from map tasks by keys,
and output these groups.

» A reduce task consumes a key and the associated values, and
generate pairs for output tasks.
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Discussions

» Good for embarrassingly parallel algorithms.

» |t was difficult to implement and deploy parallel algorithms,
even if they are conceptually simple, because one also need to
manage the cluster.

» Advantanges

» Theorectially deadlock free with predefined communication
patterns and no other synchronization between tasks.

» Stateless tasks are idempotent, which makes it possible to
build fault resilient implementations.
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Google MapReduce
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Google MapReduce

» Research paper published in 2004.
» One of the earliest work of cloud computing.
» Originated from Google's need to analyze large-scale web data
efficiently, e.g.
» Build reverse index for searching
P> Process logs to calculate URL access frequency
P Reverse web-link graph for page ranking
» On a large cluster of commodity servers.

» Instead of HPCs.

» Provide scalability by adding more servers.

» Fault resilience as servers fail, which is more likely to happen
as number of servers increase.
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Cluster Hardware

(Keep in mind this was around 2004.)

>

>
>
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Large clusters of commodity PCs connected with Ethernet.

Dual-processor with 2-4GB memory running Linux.

Commodity networking hardware with 100Mb or 1Gb
connections to individual machine.

» Bottlenecks may exist if many machines need to talk with
many other machines at the same time.

Storage provided by inexpensive hard drives attached to
machines locally.

Failures are common with hundreds or thousands of machines.
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Execution Flow

» User program provides a map function and a reduce function.
» Assume there will be M map tasks and R reduce tasks.
» M and R should be larger than available number of machines.
» The MapReduce library splits input files into M chunks and
starts up copies of user program on many machines.

> A copy of the program runs as master and the rest are
workers. Master assign map or reduce tasks to idle workers.

> A map worker calls user's map function to read an input
chunk and outputs key/value pairs to a memory buffer.
» Pairs in memory buffer are written to local disk periodically.

» The pairs are partitioned into R regions on the disk, one for
each reduce task, according to the keys.

» Locations of the regions are passed to master, and then
forwarded to reduce workers.
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Execution Flow (cont.)

> A reduce worker receiving locations from master will request
its regions from map workers via RPC.
» There are more keys than R so the regions for a single reduce
task will contain many keys.
» The reduce worker groups pairs by their keys.
» The reduce worker calls user’s reduce function multiple times,
one for each group of pairs with the same key.
» Outputs from these function calls are appended to the end of
the final output file of this reduce task.
» The master notifies the user program when all map and
reduce tasks complete.
» Results are available from R final output files — usually as
inputs to other MapReduce calls or distributed applications.
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Locality

» Both input files and final output files are stored in a
distributed file system.
» On local drives of the machines across the whole cluster.
» Data are replicated to survive machine failures.
> Network bandwidth is a relatively scarce resource.
» Whenever possible, schedule a map task to a worker where the
input data is available locally.
» If not possible, schedule it to the worker that is close to the
input data to reduce overall network traffic.
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Batch Processing

» High system utilization to reduce cost of computing.
» |everage paralellism within large amount of data to process
them in parallel.
» Many different keys and many pairs lead to large M and R.
» Large M and R keep all workers busy, saturating compuational
resources like CPU, memory, local drives, and networking.

» High latency from when inputs are available to when outputs
are computed.

» Cannot complete processing for a key before all pairs with the
same key become available to the reduce worker.

» Pairs need to be written to local storage first.

» Pairs need to be sent across network to a different worker.

» A single bad worker may delay the completion of the whole
computation.
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Fault Tolerance

» Worker failure

» Each task has a state among idle (wait for scheduling),
in-progress, and completed.

» Master discovers worker failures via liveness check.

» Completed reduce tasks on failed workers, if the final output
files are available from replicas, need no further action.

» All other tasks on failed workers (completed map tasks,
in-progress map and reduce tasks) are marked as idle, waiting
to be scheduled again.

» Running a task multiple times won't cause issues as map and
reduce functions are stateless and idempotent.

» Master failure
» Master state includes states of tasks and which workers run
them if they are in-progress.
P> Master may write its state to storage periodically so it could
restart from a previously known state.
» Nevertheless, it is less likely master will fail so one just restart
the whole process if it fails.
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Resilient Distributed Datasets and Apache Spark
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Motivation
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Google MapReduce and similar implementations store task
outputs to drives before they are used as inputs to other tasks

> A lot of overhead in disk |/O and serialization

This is ineffienct for iterative algorithms where intermediate
results are reused frequently across multiple computations.

» E.g. for machine learning and graph algorithms.
Interactive tasks would also require a faster turnaround time.

Can we make better use of the memory distributed across
machines in the whole cluster?

» What is the main reason for MapReduce to store intermediate
results to drives?
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Resilient Distributed Datasets (RDDs)

» A fault-tolerant and parallel data structure.

> Allow users to explicitly persist intermediate results in
memory, with partitioning to optimize data placement.

» Manipulate via coarse-grained transformations.

» Avoid costly replications for fault tolerance.
» Transformations are idempotent: record and reapply them to
rebuild the data set if it is lost due to failures.

» Applicable to computations where the same operation is
applied to multiple data items.

» A good fit for many parallel applications.

» Supported via Apache Spark, an open-source framework
running on top of JVM for data processing on clusters.
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RDD Abstraction

» An RDD is a read-only, partitioned collection of records.
» Distributed across many machines.
» Created from data in stable storage that will survive failures, or
» From other RDDs via transformations like map and filter.
» Actions like count and save output data derived from RDDs to
be consumed by other systems.

» Transformations are lazy operations.

» Enable optimizations across multiple transformations.
» A program can recompute a RDD after failure if lineage is
known (how to compute it from data in stable storage).

» Users control persistence and partitioning for RDDs.

» Persistence defines RDDs that will be reused, and chooses a
storage strategy like in-memory to save |/0O.

> Partitioning controls placement of records, usually via a key
within them, e.g. to make certain records from two RDDs
available on the same machine when generating a new RDD.
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Spark Example

lines = spark.textFile("hdfs://...")
errors = lines.filter(_.startsWith("ERROR"))

errors.persist() // make errors reusable later
errors.count() // action: count errors

// Count errors mentioning MySQL:
errors.filter(_.contains("MySQL")) .count ()

// Return the time fields of errors mentioning HDFS as an array
// (assuming time is field number 3 in a tab-separated format):
errors.filter(_.contains ("HDFS"))

.map(_.split(°\t’) (3))

.collect()

» Process log messages to locate errors.

» In Scala where _ starts an anonymous function.

» Once errors are available from memory, subsequent queries
can be answered quickly, supporting interactive applications.
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Summary

» What Google MapReduce trying to achieve becomes common
practice for cloud computing nowadays.
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