
ECE 473/573
Cloud Computing and Cloud Native Systems
Lecture 23 Batch and Stream Processing I

Professor Jia Wang
Department of Electrical and Computer Engineering

Illinois Institute of Technology

November 11, 2024

1/22 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Outline

Computing with MapReduce

Google MapReduce

Resilient Distributed Datasets and Apache Spark

2/22 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Reading Assignment

▶ This and next lecture:
▶ MapReduce: Simplified Data Processing on Large Clusters

https://research.google/pubs/pub62/
▶ Resilient Distributed Datasets: A Fault-Tolerant Abstraction

for In-Memory Cluster Computing http://people.csail.

mit.edu/matei/papers/2012/nsdi_spark.pdf

▶ We will also introduce cryptography for cloud security next
lecture.

3/22 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

https://research.google/pubs/pub62/
http://people.csail.mit.edu/matei/papers/2012/nsdi_spark.pdf
http://people.csail.mit.edu/matei/papers/2012/nsdi_spark.pdf


Outline

Computing with MapReduce

Google MapReduce

Resilient Distributed Datasets and Apache Spark

4/22 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



MapReduce Model

▶ A model to specify parallel algorithms.
▶ Consist of tasks that communicates with each other.

▶ A few types of tasks: input, map, combine, reduce, output.
▶ Communication is implicit: tasks communicate by exchanging

their inputs/outputs.
▶ Inputs/outputs are (key,value) pairs where key indicates the

destination and value is the payload.
▶ Pre-defined communication patterns: input → map →

combine → reduce → output.

▶ Simplify parallel programming on clusters.
▶ Easy to reason with pre-defined communication patterns.
▶ Usually the map and the reduce tasks are specified by users.
▶ Underlying implementations like Apache Hadoop provides

cluster management for tasks scheduling, data movement,
fault resilience, etc.

5/22 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Map Tasks

class Map_WordCount extends ... {

public void map(

LongWritable key, Text value,

OutputCollector<Text, IntWritable> output,

Reporter reporter) throws IOException {

String line = value.toString();

StringTokenizer tokenizer = new StringTokenizer(line);

while (tokenizer.hasMoreTokens()) {

output.collect(

new Text(tokenizer.nextToken()),

new IntWritable(1));

}

}

}

▶ A map task consume what an input task generate and outputs
pairs to combine tasks.

▶ Multiple map tasks running in parallel are able to consume
and generate a lot of data.

6/22 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Reduce Tasks

class Reduce_WordCount extends ... {

public void reduce(

Text key, Iterator<IntWritable> values,

OutputCollector<Text, IntWritable> output,

Reporter reporter) throws IOException {

int sum = 0;

while (values.hasNext()) {

sum += values.next().get();

}

output.collect(key, new IntWritable(sum));

}

}

▶ Combine tasks group output pairs from map tasks by keys,
and output these groups.

▶ A reduce task consumes a key and the associated values, and
generate pairs for output tasks.

7/22 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Discussions

▶ Good for embarrassingly parallel algorithms.
▶ It was difficult to implement and deploy parallel algorithms,

even if they are conceptually simple, because one also need to
manage the cluster.

▶ Advantanges
▶ Theorectially deadlock free with predefined communication

patterns and no other synchronization between tasks.
▶ Stateless tasks are idempotent, which makes it possible to

build fault resilient implementations.

8/22 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Outline

Computing with MapReduce

Google MapReduce

Resilient Distributed Datasets and Apache Spark

9/22 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Google MapReduce

▶ Research paper published in 2004.
▶ One of the earliest work of cloud computing.

▶ Originated from Google’s need to analyze large-scale web data
efficiently, e.g.
▶ Build reverse index for searching
▶ Process logs to calculate URL access frequency
▶ Reverse web-link graph for page ranking

▶ On a large cluster of commodity servers.
▶ Instead of HPCs.
▶ Provide scalability by adding more servers.
▶ Fault resilience as servers fail, which is more likely to happen

as number of servers increase.

10/22 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Cluster Hardware

(Keep in mind this was around 2004.)

▶ Large clusters of commodity PCs connected with Ethernet.

▶ Dual-processor with 2-4GB memory running Linux.
▶ Commodity networking hardware with 100Mb or 1Gb

connections to individual machine.
▶ Bottlenecks may exist if many machines need to talk with

many other machines at the same time.

▶ Storage provided by inexpensive hard drives attached to
machines locally.

▶ Failures are common with hundreds or thousands of machines.

11/22 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Execution Flow

▶ User program provides a map function and a reduce function.
▶ Assume there will be M map tasks and R reduce tasks.
▶ M and R should be larger than available number of machines.

▶ The MapReduce library splits input files into M chunks and
starts up copies of user program on many machines.

▶ A copy of the program runs as master and the rest are
workers. Master assign map or reduce tasks to idle workers.

▶ A map worker calls user’s map function to read an input
chunk and outputs key/value pairs to a memory buffer.

▶ Pairs in memory buffer are written to local disk periodically.
▶ The pairs are partitioned into R regions on the disk, one for

each reduce task, according to the keys.
▶ Locations of the regions are passed to master, and then

forwarded to reduce workers.

12/22 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Execution Flow (cont.)

▶ A reduce worker receiving locations from master will request
its regions from map workers via RPC.
▶ There are more keys than R so the regions for a single reduce

task will contain many keys.
▶ The reduce worker groups pairs by their keys.

▶ The reduce worker calls user’s reduce function multiple times,
one for each group of pairs with the same key.
▶ Outputs from these function calls are appended to the end of

the final output file of this reduce task.

▶ The master notifies the user program when all map and
reduce tasks complete.
▶ Results are available from R final output files – usually as

inputs to other MapReduce calls or distributed applications.

13/22 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Locality

▶ Both input files and final output files are stored in a
distributed file system.
▶ On local drives of the machines across the whole cluster.
▶ Data are replicated to survive machine failures.

▶ Network bandwidth is a relatively scarce resource.
▶ Whenever possible, schedule a map task to a worker where the

input data is available locally.
▶ If not possible, schedule it to the worker that is close to the

input data to reduce overall network traffic.

14/22 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Batch Processing

▶ High system utilization to reduce cost of computing.
▶ Leverage paralellism within large amount of data to process

them in parallel.
▶ Many different keys and many pairs lead to large M and R.
▶ Large M and R keep all workers busy, saturating compuational

resources like CPU, memory, local drives, and networking.

▶ High latency from when inputs are available to when outputs
are computed.
▶ Cannot complete processing for a key before all pairs with the

same key become available to the reduce worker.
▶ Pairs need to be written to local storage first.
▶ Pairs need to be sent across network to a different worker.
▶ A single bad worker may delay the completion of the whole

computation.

15/22 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Fault Tolerance

▶ Worker failure
▶ Each task has a state among idle (wait for scheduling),

in-progress, and completed.
▶ Master discovers worker failures via liveness check.
▶ Completed reduce tasks on failed workers, if the final output

files are available from replicas, need no further action.
▶ All other tasks on failed workers (completed map tasks,

in-progress map and reduce tasks) are marked as idle, waiting
to be scheduled again.

▶ Running a task multiple times won’t cause issues as map and
reduce functions are stateless and idempotent.

▶ Master failure
▶ Master state includes states of tasks and which workers run

them if they are in-progress.
▶ Master may write its state to storage periodically so it could

restart from a previously known state.
▶ Nevertheless, it is less likely master will fail so one just restart

the whole process if it fails.

16/22 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Outline

Computing with MapReduce

Google MapReduce

Resilient Distributed Datasets and Apache Spark

17/22 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Motivation

▶ Google MapReduce and similar implementations store task
outputs to drives before they are used as inputs to other tasks
▶ A lot of overhead in disk I/O and serialization

▶ This is ineffienct for iterative algorithms where intermediate
results are reused frequently across multiple computations.
▶ E.g. for machine learning and graph algorithms.

▶ Interactive tasks would also require a faster turnaround time.
▶ Can we make better use of the memory distributed across

machines in the whole cluster?
▶ What is the main reason for MapReduce to store intermediate

results to drives?

18/22 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Resilient Distributed Datasets (RDDs)

▶ A fault-tolerant and parallel data structure.

▶ Allow users to explicitly persist intermediate results in
memory, with partitioning to optimize data placement.

▶ Manipulate via coarse-grained transformations.
▶ Avoid costly replications for fault tolerance.
▶ Transformations are idempotent: record and reapply them to

rebuild the data set if it is lost due to failures.

▶ Applicable to computations where the same operation is
applied to multiple data items.
▶ A good fit for many parallel applications.

▶ Supported via Apache Spark, an open-source framework
running on top of JVM for data processing on clusters.

19/22 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



RDD Abstraction

▶ An RDD is a read-only, partitioned collection of records.
▶ Distributed across many machines.
▶ Created from data in stable storage that will survive failures, or
▶ From other RDDs via transformations like map and filter.
▶ Actions like count and save output data derived from RDDs to

be consumed by other systems.

▶ Transformations are lazy operations.
▶ Enable optimizations across multiple transformations.
▶ A program can recompute a RDD after failure if lineage is

known (how to compute it from data in stable storage).

▶ Users control persistence and partitioning for RDDs.
▶ Persistence defines RDDs that will be reused, and chooses a

storage strategy like in-memory to save I/O.
▶ Partitioning controls placement of records, usually via a key

within them, e.g. to make certain records from two RDDs
available on the same machine when generating a new RDD.

20/22 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Spark Example

lines = spark.textFile("hdfs://...")

errors = lines.filter(_.startsWith("ERROR"))

errors.persist() // make errors reusable later

errors.count() // action: count errors

// Count errors mentioning MySQL:

errors.filter(_.contains("MySQL")).count()

// Return the time fields of errors mentioning HDFS as an array

// (assuming time is field number 3 in a tab-separated format):

errors.filter(_.contains("HDFS"))

.map(_.split(’\t’)(3))

.collect()

▶ Process log messages to locate errors.
▶ In Scala where _ starts an anonymous function.

▶ Once errors are available from memory, subsequent queries
can be answered quickly, supporting interactive applications.

21/22 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Summary

▶ What Google MapReduce trying to achieve becomes common
practice for cloud computing nowadays.

22/22 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT


	Computing with MapReduce
	Google MapReduce
	Resilient Distributed Datasets and Apache Spark

