
ECE 473/573
Cloud Computing and Cloud Native Systems

Lecture 21 Manageability

Professor Jia Wang
Department of Electrical and Computer Engineering

Illinois Institute of Technology

November 4, 2024

1/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Outline

Health Check

Manageability

2/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Reading Assignment

▶ This lecture: 9, 10

▶ Next Lecture: 11

3/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Outline

Health Check

Manageability

4/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Service Redundancy

▶ Duplicate critical components or functions to improve
reliability.
▶ Deploy component to multiple server instances.
▶ Ideally across multiple zones or even across multiple regions.

▶ Autoscaling helps to maintain certain level of redundancy as
demand fluctuates. However, it takes time to start an instance
so there should be room for redundancy without scaling.

▶ Fault masking: a system fault is invisibly compensated for
without being explicitly detected.
▶ Without careful planning, redundancy will lead to fault

masking that conceals progressive faults.
▶ E.g. loss of nodes for a service are not observed until all nodes

are lost, causing a sudden and catastrophic outcome.

5/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Health Check: Pull Model

▶ An API endpoint for clients to decide if a service instance is
alive and healthy.
▶ For clients that are aware of the redundancy, e.g. Cassandra

and Kafka clients, as well as load balancers, monitoring
services, service registries, etc.

▶ Usually implemented as an HTTP endpoint for simplicity.
▶ E.g. available from /health that returns 200 OK for a health

service or 503 Service Unavailable otherwise.

▶ Trade-offs between latency and scalability.
▶ Frequent health checks may lead to inefficiency, in particular

when there are a lot of services and a lot of clients.
▶ For longer intervals between health checks, clients may miss

critical information like when a service actually dies.

6/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Health Check: Push Model

▶ Let services send health information to clients.
▶ Periodically, e.g. heartbeats.
▶ Proactively when health status changes.

▶ A more complex system.
▶ Where are the clients?
▶ What if there are more information than what a single client

can handle?
▶ Use message queues to decouple services from clients and to

handle scalability better.

▶ What does it mean for an instance to be “healthy”?
▶ Is a response of 200 OK from /health sufficient for both the

clients and the instance?

7/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



“Healthy” Instances

▶ Simple definition: “healthy” means “available”
▶ But availability of instances may be impacted by availability of

services these instances depending on.
▶ Restarting/replacing these instances won’t help at all.

▶ Need to make choices depending on services.
▶ Liveness checks: a simple response to indicate the service

instance is reachable and responding, confirming correctness of
network, security, and service configuration.

▶ Shallow health checks: ensure local resources (memory, CPU,
disk etc.) and dependencies (monotoring etc.) are available so
the service instance is likely to be able to funciton.

▶ Deep health checks: inspect the ability to interact with other
subsystems, identifying potential issues like networking –
however, it is costly and it is possible to have all instances
reporting unhealthy.

8/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Outline

Health Check

Manageability

9/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Manageability

▶ Change behaviors without having to recode and redeploy.
▶ By yourself or by someone else.

▶ Manageability allows to make changes from outside.
▶ Maintainability allows to make changes from inside, usually by

updating code.

▶ Manageability for complex systems.
▶ Make configuration and control options available.
▶ Use monitoring, logging, and alerting to identify components

that require management, e.g. misconfigured components.
▶ Manage deployment by updating, rolling back, and scaling

system components.
▶ Discover available services.

10/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Application Configuration

▶ Configuration: anything likely to vary between environments
like staging, production, developer, etc.

▶ Store configuration in the environment.
▶ Configuration should be strictly separated from the code.
▶ Configurations should be stored in version control – make it

possible to inspect, review, rollback, and troubleshoot changes.

▶ Configuration practices
▶ Command-line flags and environment variables: use start-up

scripts for version control.
▶ Configuration files: use standard format like JSON and YAML.
▶ Simplify and minimize configuration effort by using default

values that are reasonable and unsurprising.

11/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Configuring with Environment Variables

▶ Use environment variables
name := os.Getenv("NAME")

place := os.Getenv("CITY")

fmt.Printf("%s lives in %s.\n", name, place)

▶ Distinguish between an empty value and an unset value.
if val, ok := os.LookupEnv(key); ok {

fmt.Printf("%s=%s\n", key, val)

} else {

fmt.Printf("%s not set\n", key)

}

12/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Configuring with Command-Line Arguments

package main

import (

"flag"

"fmt"

)

func main() {

strp := flag.String("string", "foo", "a string")

intp := flag.Int("number", 42, "an integer")

boolp := flag.Bool("boolean", false, "a boolean")

flag.Parse() // Call flag.Parse() to execute command-line parsing.

fmt.Println("string:", *strp)

fmt.Println("integer:", *intp)

fmt.Println("boolean:", *boolp)

fmt.Println("args:", flag.Args())

}

▶ Use the flag package for command-line flags.
▶ Register with types, default values, and short descriptions
▶ Map flags to variables.

13/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Configuring with Command-Line Arguments (cont.)

$ go run . -help

Usage of /var/folders/go-build618108403/exe/main:

-boolean

a boolean

-number int

an integer (default 42)

-string string

a string (default "foo")

$ go run . -boolean -number 27 -string "A string." Other things.

string: A string.

integer: 27

boolean: true

args: [Other things.]

14/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Configuring with JSON Files

type Config struct {

Host string

Port uint16

Tags map[string]string

}

func EncodeJson() {

c := Config{

Host: "localhost",

Port: 1313,

Tags: map[string]string{"env": "dev"},

}

bytes, err := json.Marshal(c)

fmt.Println(string(bytes))

// {"Host":"localhost","Port":1313,"Tags":{"env":"dev"}}

}

▶ Use json.Marshal() to encode any struct as JSON string.
▶ Only public fields (begin with a capital letter) are encoded.

15/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Configuring with JSON Files (cont.)

▶ Use json.Unmarshal() to decode JSON string into a struct.
c := Config{}

bytes := []byte(‘{"Host":"127.0.0.1","Port":1234,"Tags":{"foo":"bar"}}‘)

err := json.Unmarshal(bytes, &c)

▶ Missing fields will have a default value of zero or empty.
▶ Extra fields will be ignored.

▶ Use interface{} to decode JSON string as it is.
var f interface{}

bytes := []byte(‘{"Foo":"Bar", "Number":1313, "Tags":{"A":"B"}}‘)

err := json.Unmarshal(bytes, &f)

fmt.Println(f)

// map[Number:1313 Foo:Bar Tags:map[A:B]]

▶ f has a type of map[string]interface{}, enabling a
recursive tree-like data structure for arbitrary JSON data.

▶ Mapping between struct and JSON string can be customized
via struct field tags (like annotations in Java).

▶ YAML strings are handled similarly.

16/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Additional Considerations for Application Configuration

▶ Should we reload a configuration file if it changes?
▶ No for simplicity: kill and restart
▶ Yes for no downtime: use polling and hashing to watch for

updates, or use OS filesystem notifications.

▶ Use more advanced (and more complicated) libraries like
Cobra and Viper as a complete configuration solution.

17/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Feature Management

▶ Allow control of program features and flows.
▶ Enable experimental features conditionally for testing.
▶ Adjust features like algorithms according to use cases.

▶ Feature flags: enable/disable features via configurations
▶ Manage different code versions in one code base, encouraging

smaller and faster iterations.
▶ Integrate with resilience patterns like circuit breaker to

automatically turn on and off.
▶ Control feature rollouts to specific users.

▶ Scripting: complete control of features and flows.
▶ For very complicated applications, e.g. mods for games and

Tcl scripts for EDA tools.
▶ Separate execution flow and features from program binary.
▶ Very flexible – nevertheless, it blurs the boundary between

manageability and maintainability.

18/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Summary

▶ Make your application configurable via command-line flags
and environment variable, as well as configuration files.

19/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT


	Health Check
	Manageability

