
ECE 473/573
Cloud Computing and Cloud Native Systems

Lecture 20 Resilience

Professor Jia Wang
Department of Electrical and Computer Engineering

Illinois Institute of Technology

October 30, 2024

1/18 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Outline

Resilience

Retries Revisited

2/18 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Reading Assignment

▶ This lecture: 9

▶ Next Lecture: 9, 10

3/18 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Outline

Resilience

Retries Revisited

4/18 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Why Resilience Matters?

▶ An incident from Amazon
▶ Brief failure of a portion of internal network.
▶ Some distributed database servers are affected.
▶ When network was restored, these servers simultaneously

requested their states from the metadata service.
▶ The metadata service was overloaded and not able to serve

servers that were not affected by the network failure.
▶ Servers started a “retry storm” to the metadata service.
▶ Engineers had to resolve the incident manually.

▶ Failures in complex systems never have a single root cause.
▶ A failure in a subsystem may trigger a latent fault in another

subsystem and cause it to fail.
▶ And another, until the whole system goes done.
▶ If a subsystem like the metadata service is able to isolate and

recover from other failures, more likely the whole system can
recover without human intervention.

5/18 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



What is Resilience?

▶ Resilience is the ability for a system to withstand and recover
from errors and failures.
▶ The system can continue operating correctly when some

subsystem fails, possibly at a reduced level.
▶ Instead of failing completely.

▶ Resilience is not reliability
▶ Resilience allows a system to degrade its performance to cope

with failures.
▶ Reliability requires a system to behave as expected for a given

time interval, e.g. to meet dynamic demand via scalability.
▶ Resilience, together with scalability, loose coupling,

manageability, and observability, are factors contributing to the
reliability of the system.

6/18 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Understand System Failures

▶ A system consists of components.
▶ Each component, or subsystem, is also a system by itself,

consisting of smaller components, and so on.

▶ Progress of system failure
▶ All systems contain faults, e.g. bugs, and have limitations.

Under certain conditions, errors are produced.
▶ Errors are those system behaviors differ from intended ones. If

not handled properly, errors cause failures.
▶ A system with failures can no longer provide correct service.
▶ Failure at subsystem level becomes fault at system level.

7/18 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Cascading Failures

▶ Cascading failure is a common mode of failure as shown in the
incident from Amazon.

▶ Failures in subsystems lead to a positive feedback.
▶ Requests from database servers cause metadata servers to time

out, which in turn cause more database servers to fail and to
generate even more requests.

▶ Eventually all attempts to compensate for failed subsystems
fail and the system fails.

▶ Spread very quickly, often in a few minutes.

8/18 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Overload

▶ Overload is a classic cause of such cascading failures.

▶ Every system has certain amount of redundancy, especially for
scalable system.

▶ A failed node doesn’t cause system failure as its load can be
redistributed to remaining nodes.

▶ However, if the increased load causes one of the remaining
nodes to fail, then loads on remaining nodes will further
increase.

▶ The positive feedback causes the failure to propagate too
quickly so scalability doesn’t have enough time to kick in to
decrease loads on nodes.

9/18 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Preventing Overload

▶ Be defensive: services should reject requests beyond their
functional limitations.

▶ Throttling: make sure no particular user consumes more
resources than they would reasonably require.
▶ Isolate errors to subsystems that send those requests.

▶ Load shedding: intentionally drop requests.
▶ Limit errors to this subsystem by not sending more requests.

▶ Graceful service degradation
▶ Not possible for all services but for services that could, more

gracefully than simply drop the requests.
▶ E.g. serve images at lower resolution, videos at smaller bit

rate, and data from cache that could be stale.

10/18 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Load Shedding Implementation

const MaxQueueDepth = 1000

func loadSheddingMiddleware(next http.Handler) http.Handler {

return http.HandlerFunc(func (w http.ResponseWriter, r *http.Request) {

// CurrentQueueDepth is fictional and for example purposes only.

if CurrentQueueDepth() > MaxQueueDepth {

log.Println("load shedding engaged")

http.Error(w, err.Error(), http.StatusServiceUnavailable)

return

}

next.ServeHTTP(w, r)

})

}

▶ Load shedding can usually be implemented via a queue.
▶ Large queue depth (length) implies overload.

▶ It is better to have some clients receiving error codes than
causing most of them to timeout.
▶ We cannot afford to waste more server resources processing

requests that are going to be timeout soon.

11/18 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Outline

Resilience

Retries Revisited

12/18 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Retries

▶ Overload prevention applies to services.
▶ Make them defensive for errors from clients

▶ Clients can take proactive actions when errors are observed.
▶ Make errors easier to handle for services so that failures are

less likely to happen.
▶ Not all services are defensive and prepared for those errors.

▶ Simple retries won’t work.
res, err := SendRequest()

for err != nil {

res, err = SendRequest()

}

▶ A lot of clients doing the same are spamming the service,
causing a “retry storm”.

▶ Overall retrying frequency is usually limited by the network
bandwidth to the service.

13/18 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Simple Backoff

res, err := SendRequest()

for err != nil {

time.Sleep(2 * time.Second)

res, err = SendRequest()

}

▶ What if we ask clients to wait a while before retrying?
▶ Cannot wait for too long as service may be back online soon.

▶ Overall retrying frequency will be greatly reduced.
▶ However, it still grows as number of clients grow.

14/18 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Exponential Backoff

res, err := SendRequest()

base, cap := time.Second, time.Minute

for backoff := base; err != nil; backoff <<= 1 {

if backoff > cap {

backoff = cap

}

time.Sleep(backoff)

res, err = SendRequest()

}

▶ Clients can wait longer as more errors are observed.
▶ Double the wait time until an upper bound is reached.

▶ Overall retrying frequency will be reduced as service takes
more time to recover.

▶ However, if a service fails, very likely many clients observe the
error at the same time and follow the same retry schedule.
▶ Lead to spikes in retries that may be difficult to cope.

15/18 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Randomized Exponential Backoff

res, err := SendRequest()

base, cap := time.Second, time.Minute

for backoff := base; err != nil; backoff <<= 1 {

if backoff > cap {

backoff = cap

}

jitter := rand.Int63n(int64(backoff * 3))

sleep := base + time.Duration(jitter)

time.Sleep(sleep)

res, err = SendRequest()

}

▶ Adding a random jitter allows clients to send retries at
different times.

▶ Make sure to seed the random number generator differently at
the beginning of your program so the clients don’t follow the
same random sequence.

16/18 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Other Proactive Mechamisms

▶ Circuit breaker: avoid retrying after certain amount of errors.
▶ Don’t waste resources and clog network – give more time for

services to come back.

▶ Timeouts: allow clients to give up progresses – fail fast
▶ A client may depend on many services to complete a task.
▶ If one service fails, the client can release resources that are

obtained from other services, reducing overall system load.
▶ Instead of holding resources that cannot be immediately used.

▶ Don’t forget that in order to handle errors properly, services
must be idempotent.
▶ Otherwise retries and restarts may cause additional faults to

happen as integrity of data cannot be guaranteed.

17/18 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Summary

▶ Services and clients can work together to prevent cascading
failures.

18/18 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT


	Resilience
	Retries Revisited

