
ECE 473/573
Cloud Computing and Cloud Native Systems

Lecture 19 Message Queues

Professor Jia Wang
Department of Electrical and Computer Engineering

Illinois Institute of Technology

October 28, 2024

1/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Outline

Message Queues

Kafka

2/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Reading Assignment

▶ This lecture: Apache Kafka
https://kafka.apache.org/documentation/#design

▶ Next Lecture: 9

3/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

https://kafka.apache.org/documentation/#design


Outline

Message Queues

Kafka

4/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Message Queues

▶ A middleware to enable message communication between
senders and receivers, e.g. a message broker.
▶ Reduce coupling by removing the immediate connections

between message senders and receivers.
▶ Serve as a buffer to reduce impact of performance difference

between senders and receivers when there is a burst of load.

▶ How massages are distributed among receivers for a queue?
▶ Producer-Consumer: senders are producers generating jobs as

messages, receivers are consumers taking jobs out of the queue
to work on them – no two consumers work on the same job.

▶ Publisher-Subscriber (Pub-Sub): senders publish messages and
all receivers as subscribers receive all messages.

5/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Persistence

▶ What if queues fails?
▶ Persistence is required for producer-consumer queues.

▶ Otherwise jobs may be lost.

▶ Persistence for Pub-Sub queues
▶ With persistence, a subscriber can subscribe at any time to

receive all past and future messages.
▶ Without persistence, a subscriber only receives future messages

after it subscribes but not past ones.
▶ However, it takes resources to support persistence so one need

to make a choice depending on application requirements.

6/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Topic Management

▶ Queues are usually identified by topics.
▶ Usually a meaningful string providing hints on what messages

inside are all about.
▶ More frequently used for Pub-Sub queues.

▶ Each publisher or sender, sends (topic, message) to the
message broker.
▶ So the message broker knows to which queue the message

should go.

▶ Each subscriber or receiver, when establishing connection with
the message broker, specifies what topics it is interested into.
▶ Then the message broker will only send (topic, message) with

matching topics to this subscriber.

7/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Ideal Queue Behavior

▶ FIFO (first-in-first-out) ordering.
▶ Messages are delivered to the receivers in the order they are

sent by the senders.

▶ Exactly-once delivery.
▶ Messages sent by senders are delivered to receivers exactly

once – no lost messages and no repetition.
▶ For producer-consumer queues, a producer generates a message

and exactly one consumer consumes it exactly exactly once.
▶ For publisher-subscriber queues, a publisher publishes a

message and every subcriber receives it exactly once.

▶ Can we achieve these with networked services?
▶ With a single message broker.
▶ With multiple message brokers for horizontal scalability.

8/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Communication Challenges for Ordering

▶ Consider when there is a single message broker.
▶ The broker should be able to store and then send out messages

in the order of their arrivals.
▶ The FIFO ordering makes it possible to optimize persistence

for high sequential read and write throughput.

▶ It takes time for messages to arrive from senders to the
message broker and from the message broker to receivers.
▶ For best performance, messages may take different network

paths so may arrive out-of-order.
▶ Messages from different senders on the same topic can only be

ordered when they arrive at the message broker.

▶ Why can’t the message broker reorder messages differently
than the arrival order, e.g. using timestamps as keys?
▶ This functionality should be provided through a key-value

database that is more complicated and much slower.

9/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Communication Challenges for Exactly-Once Delivery

▶ Network communications are unreliable.
▶ Protocols like TCP and HTTP guarantee delivery only when

there is no failure.

▶ Delivery guarantees considering failures
▶ At-most once (best effort): messages are sent once, don’t use

any acknowledgement.
▶ At-least once: resend messages until acknowledgements are

received.

▶ Apparently, exactly-once delivery can be achieved by using
sequence numbers with at-least once delivery.
▶ Message brokers number messages as they arrive.
▶ Subscribers and consumers utilize these numbers to

acknowledge and reorder messages.

▶ However, maintaining sequence numbers as messages are
generated by publishers and producers is not trivial.
▶ Resending unacknowledged messages further complicates the

issue as it leads to additional out-of-order arrivals.

10/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Scalability Challenges

▶ Consider horizontal scalability where multiple message brokers
are running on multiple servers.

▶ Each message broker can handle a number of topics.
▶ Similar to the idea of sharding and function partitioning.

▶ Each topic can be replicated to multiple message brokers.
▶ Which then serve huge number of subscribers.

▶ However,
▶ Scaling with multiple publishers and producers sending

messages to the same topic is difficult.
▶ Scaling for consumers is difficult as replicas need to have

consensus on which consumer should process which message.

11/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Outline

Message Queues

Kafka

12/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Apache Kafka

▶ An open-source distributed event streaming platform.
▶ Developed in LinkedIn, open-sourced in 2011

▶ Features
▶ Low-latency message delivery for high volume event streams,

e.g. real-time log aggregation and offline data loading.
▶ Support a computational model for real-time analytics by

consuming and producing event streams.
▶ Fault tolerance.

13/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Architecture

▶ Events as messages are organized and stored in topics.
▶ A combination of producer-consumer and publisher-subscriber

message queues for scalability.
▶ Kafka producers publish (write) events to topics.
▶ Kafka consumers subscribe to topics and read events within.
▶ Events in a topic are partitioned – a group of consumers can

read these events in parallel, each for a different partition.
▶ Multiple groups of consumers can still read events in a topic as

many times as desired.

▶ Kafka brokers store partitions for topics.
▶ Sharding: partitions of a single topic are distributed to multiple

brokers for better write performance.
▶ Replication: a single partition is replicated across multiple

brokers for better read performance, availability, and durability.

14/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Persistence and Performance

▶ Major factor to drive Kafka design decisions.
▶ Rely heavily on filesystem for storing and caching messages.

▶ Sequential write and read throughput are high enough to
saturate network communications.

▶ OS automatically makes efficient use of large amount of
memory when caching disk data for sequential accesses.

▶ On the contrary, most languages cannot use memory as
efficiently due to object overhead and garbage collections.

▶ Disk space is virtually unlimited so messages can be kept for a
long time before being deleted.

▶ To guarantee high performance, only rely on simple and
sequential accesses to files.
▶ Store messages by appending to files.
▶ Serve messages by reading sequentially.
▶ Not to support any kinds of indices that would need random

accesses – use databases instead.

15/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Message Delivery Semantics

▶ Assume brokers to work perfectly for now.

▶ No guarantee among multiple producers within Kafka.

▶ No ordering among multiple partitions, even if they are from
the same topic.

▶ Exactly-once processing is supported via Kafka transactions.
▶ A single transaction reads from and writes to multiple

partitions, possibly from different topics.

▶ There are options for weaker guarantees for other use cases.
▶ A single producer with a single partition.
▶ A group of consumers with a topic.

16/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Message Delivery for Producers

▶ A single producer with a single partition.
▶ At-most once: broker doesn’t acknowledge

▶ Messages may arrive out of order.

▶ At-least once: producer resends messages until acknowledged
▶ Broker may store a message twice.
▶ If a previous message is not acknowledged yet, the next

message may arrive out of order.

▶ Idempotent delivery: producer adds sequence numbers
▶ Base on at-least once delivery
▶ Broker remove duplicates and acknowledges messages in-order.
▶ May affect performance as out-of-order arrivals are not

acknowledged and need resend.
▶ Only for the lifetime of the producer, no guarantee if it restarts.

17/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Message Processing for Consumers

▶ A group of consumers with a topic.

▶ Each consumer reads one partition of the topic.
▶ Each consumer saves its position within its partition.

▶ The position indicates where to read from if the consumer
restarts after a failure.

▶ However, there are two choices as the consumer need to
process the message.

▶ Process-then-save: at-least once
▶ If the consumer fails after processing the message but before

saving the position, then when it restarts, it will process the
message again.

▶ Make sure the processing is idempotent to avoid any issues.

▶ Save-then-process: at-most once
▶ If the consumer fails after saving the position but before

processing the message, then when it restarts, it will skip the
message.

18/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Replication

▶ Unit of replication is a partition.
▶ Consensus determines a leader replica for each partition.

▶ Producers write to leader directly.
▶ Other replicas (followers) replicate from the leader.
▶ Consensus and all states are managed in ZooKeeper.
▶ Not P for CAP theorem: no partition tolerance.

▶ In-sync replicas (ISRs)
▶ Replicas that are not too far behind the leader.
▶ Messages available from all ISRs are considered committed.
▶ Committed messages are less likely to be lost if the leader fails.
▶ Consumers only consume committed messages.
▶ Producers can choose to receive acknowledgement when the

message reaches the leader or when it is committed.

19/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Summary

▶ Use message queues to decouple message senders and
receivers.

▶ Make a choice between distributed message queues and
distributed database systems by considering their performance
differences and your application use cases.

20/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT


	Message Queues
	Kafka

