
ECE 473/573
Cloud Computing and Cloud Native Systems

Lecture 18 Loose Coupling

Professor Jia Wang
Department of Electrical and Computer Engineering

Illinois Institute of Technology

October 23, 2024

1/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Outline

Tight Coupling

Communication Patterns

2/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Reading Assignment

▶ This lecture: 8

▶ Next Lecture: Apache Kafka
https://kafka.apache.org/documentation/#design

3/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

https://kafka.apache.org/documentation/#design


Outline

Tight Coupling

Communication Patterns

4/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Coupling

▶ Degree of direct knowledge between components.
▶ E.g. a client that sends requests to a service.
▶ Cannot be avoided for a system to function.

▶ Tightly coupled: a great deal of knowledge.
▶ E.g. to require same version of shared library.
▶ An easy choice for short-term.
▶ Problematic for long-term evolutions – one must change all

tightly coupled components at the same time.

▶ Loosely coupled: minimal direct knowledge.
▶ Components are relatively independent, interacting through

mechanisms that are stable and mature.
▶ Require more up-front planning but easier to upgrade or even

be rewritten, without affecting existing systems.

5/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Forms of Tight Coupling

▶ Things that are wrongly assumed to not change.
▶ Modern software engineering practices are based on the

assumption that requirements will change frquently.
▶ Fragile exchange protocols

▶ Clients and servers communicating via SOAP/XML messages
rely on strict formats that cannot be updated independently.

▶ REST messages have less coupling because both clients and
servers may choose to ignore attributes they don’t understand.

▶ Shared dependencies
▶ Require to use specific libraries and even specific versions of

libraries for communication, e.g. Java RMI.
▶ Shared point-in-time

▶ A request-response messaging creates coupling in time as the
service must be available at the time.

▶ A bad choice if users are not waiting for immediate answers.
▶ Fixed addresses

▶ Have you ever hardcoded a file path to read data from?
▶ Network services may relocate, and having multiple of them

helps to separate production, testing, and development.
6/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Outline

Tight Coupling

Communication Patterns

7/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Communications Between Services

▶ Via message passing
▶ Shared memory communications are less popular nowadays

among servers as they make communication implicit and thus
prevent optimizations toward delays and failures.

▶ Make use of a contract.
▶ Backward-compatible with existing components.
▶ Forward-compatible with future components.

▶ Messaging patterns
▶ Request-response (synchronous): requester (client) issues a

request to a receiver (server) and waits for a response.
▶ Publish-subscribe (asynchronous): publisher send a message to

a middleware (event bus, message exchange, etc.) and
subscribers pick it up later.

▶ We will focus on request-response for this lecture and leave
publish-subscribe to the next.

8/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Request-Response Messaging

▶ A layered approach where structures can be introduced
▶ TCP/UDP: messages in bytes, need to handle message length

for TCP, and ordering and retrying for UDP.
▶ Remote procedure calls (RPC): use messages to provide

illusions to call a function on another server by sending
function name and parameters and receiving returned values.

▶ HTTP: messages as text, e.g. HTML, XML, json.
▶ REST: messages in json to represent complex data.
▶ GraphQL: json as a query language.

▶ Synchronous communications like request-response are easy to
reason and straightforward to implement.
▶ Point-to-point
▶ Responses are either available or not, indicating failures that

can be handled further.

▶ Not ideal for one-to-many communications or when requester
needs to wait for long time.

9/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



HTTP Requests in Go

// Get issues a GET to the specified URL

func Get(url string) (*http.Response, error)

// Post issues a POST to the specified URL

func Post(url, contentType string, body io.Reader) (*Response, error)

type Response struct {

Status string // e.g. "200 OK"

StatusCode int // e.g. 200

// Header maps header keys to values.

Header Header

// Body represents the response body.

Body io.ReadCloser

// ContentLength records the length of the associated content. The

// value -1 indicates that the length is unknown.

ContentLength int64

// Request is the request that was sent to obtain this Response.

Request *Request

}

▶ From the net/http package.
▶ Provide convenience functions like Get and Post.

▶ That one can call directly without the need to create some
objects for the request first.

10/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



HTTP GET Example

package main

import (

"fmt"

"io"

"net/http"

)

func main() {

resp, err := http.Get("http://example.com") // Send an HTTP GET

if err != nil {

panic(err)

}

defer resp.Body.Close() // Close your response!

body, err := io.ReadAll(resp.Body) // Read body as []byte

if err != nil {

panic(err)

}

fmt.Println(string(body))

}

11/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



HTTP POST Example

package main

import (

"fmt"

"io"

"net/http"

"strings"

)

const json = ‘{ "name":"Matt", "age":44 }‘ // This is our JSON

func main() {

in := strings.NewReader(json) // Wrap JSON with an io.Reader

// Issue HTTP POST, declaring our content-type as "text/json"

resp, err := http.Post("http://example.com/upload", "text/json", in)

if err != nil {

panic(err)

}

defer resp.Body.Close() // Close your response!

message, err := io.ReadAll(resp.Body)

if err != nil {

panic(err)

}

fmt.Printf(string(message))

}

12/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Remote Procedure Calls (RPC) with gRPC

▶ gRPC is a full-featured data exchange framework.
▶ Open sourced in 2015 by Google, and with CNCF from 2017.
▶ A modern RPC solution as an alternative to RESTful services.

▶ Advantages
▶ Conciseness: more compact than json, less network I/O.
▶ Speed: binary format is much faster to produce and consume.
▶ Strong-typing: avoid conversions, easier for troubleshooting.
▶ Feature-rich: e.g. authentication, encryption, timeout, and

compression.

▶ Disadvantages
▶ Contract-driven: more coupling, less suitable for external

facing services.
▶ Binary format: not human-readable, complicating

troubleshooting.

13/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



gRPC Message Definition

syntax = "proto3";

option go_package = "github.com/cloud-native-go/ch08/keyvalue";

message GetRequest {

string key = 1;

}

message GetResponse {

string value = 1;

}

message PutRequest {

string key = 1;

string value = 2;

}

message PutResponse {}

message DeleteRequest {

string key = 1;

}

message DeleteResponse {}

▶ Make use of protocol buffers, fairly straightforward to follow.
▶ The protocol compiler generates code for clients and servers.

▶ Available for most programming languages.

14/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



gRPC Service Definition

service KeyValue {

rpc Get(GetRequest) returns (GetResponse);

rpc Put(PutRequest) returns (PutResponse);

rpc Delete(DeleteRequest) returns (DeleteResponse);

}

▶ A service consists of a group of methods.
▶ Define an interface without providing implementations.

▶ Methods are used in the client program with your choice of
programming language.

▶ Methods are implemented in the server program with your
choice of programming language.

▶ Clients and servers can use different programming languages.

15/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Implementing gRPC Server

// generated server interface to be implemented

type KeyValueServer interface {

Get(context.Context, *GetRequest) (*GetResponse, error)

Put(context.Context, *PutRequest) (*PutResponse, error)

Delete(context.Context, *DeleteRequest) (*PutResponse, error)

}

// server.go

... // package, import etc.

type server struct {

pb.UnimplementedKeyValueServer // embed the generated struct

}

func (s *server) Get(ctx context.Context, r *pb.GetRequest) (*pb.GetResponse, error) {

log.Printf("Received GET key=%v", r.Key)

value, err := Get(r.Key)

return &pb.GetResponse{Value: value}, err

}

... // Put, Delete, etc.

16/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Implementing gRPC Server (cont.)

...

func main() {

// Create a gRPC server and register our KeyValueServer with it

s := grpc.NewServer()

pb.RegisterKeyValueServer(s, &server{})

// Open a listening port on 50051

lis, err := net.Listen("tcp", ":50051")

if err != nil {

log.Fatalf("failed to listen: %v", err)

}

// Start accepting connections on the listening port

if err := s.Serve(lis); err != nil {

log.Fatalf("failed to serve: %v", err)

}

}

17/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Implementing gRPC Client

// generated client interface to be used

type KeyValueClient interface {

Get(ctx context.Context, in *GetRequest, opts ...grpc.CallOption) (*GetResponse, error)

Put(ctx context.Context, in *PutRequest, opts ...grpc.CallOption) (*PutResponse, error)

Delete(ctx context.Context, in *DeleteRequest, opts ...grpc.CallOption) (*PutResponse, error)

}

// client.go

... // package, import etc.

func main() {

// Set up a connection to the gRPC server

conn, err := grpc.Dial("localhost:50051", grpc.WithInsecure(),

grpc.WithBlock(), grpc.WithTimeout(time.Second))

... // error handling

defer conn.Close()

// Get a new instance of our client

client := pb.NewKeyValueClient(conn)

...

18/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Implementing gRPC Client (cont.)

...

var action, key, value string

if len(os.Args) > 2 {

action, key = os.Args[1], os.Args[2]

value = strings.Join(os.Args[3:], " ")

}

// Use context to establish a 1-second timeout.

ctx, cancel := context.WithTimeout(context.Background(), time.Second)

defer cancel()

switch action {

case "get":

r, err := client.Get(ctx, &pb.GetRequest{Key: key})

... // error handling

log.Printf("Get %s returns: %s", key, r.Value)

case "put":

_, err := client.Put(ctx, &pb.PutRequest{Key: key, Value: value})

... // error handling

log.Printf("Put %s", key)

default:

log.Fatalf("Syntax: go run [get|put] KEY VALUE...")

}

}

19/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Summary

▶ Coupling is unavoidable.

▶ But we can keep it minimal with a good choice of
communication patterns.

20/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT


	Tight Coupling
	Communication Patterns

