
ECE 473/573
Cloud Computing and Cloud Native Systems

Lecture 16 Resource Management II

Professor Jia Wang
Department of Electrical and Computer Engineering

Illinois Institute of Technology

October 16, 2024

1/16 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Outline

Borg

2/16 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Reading Assignment

▶ This lecture: Large-scale cluster management at Google with
Borg https://storage.googleapis.com/

pub-tools-public-publication-data/pdf/43438.pdf

▶ Next lecture: Kubernetes
https://kubernetes.io/docs/concepts/

3/16 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

https://storage.googleapis.com/pub-tools-public-publication-data/pdf/43438.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/43438.pdf
https://kubernetes.io/docs/concepts/


Outline

Borg

4/16 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Google Borg

▶ An internal cluster management system developed by Google.
▶ Across a number of clusters each with up to tens of thousands

of machines.
▶ Support hundreds of thousands of jobs from many thousands

of different applications.

▶ Benefits
▶ Hide details of resource management and failure handling so

users can focus on application development.
▶ High availability and reliability, and support applications that

do the same.
▶ Operating at scale while providing resiliency and completeness.

5/16 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



User Perspective

▶ Users of Borg are developers and SREs (system administrators
as site reliability engineers).

▶ Unit of management is a Borg cell.
▶ Users submit work to Borg as jobs.
▶ Each job consists of tasks all run the same binary program.
▶ The Borg cell refers to the set of machine the job runs in.

▶ Physically, machines in a cell belong to a single cluster.
▶ In a single datacenter building, connected by high-performance

datacenter-scale network.
▶ Machines are heterogeneous: CPU etc. can be all different.

▶ Borg manages physical machines and hides their differences
and failuers from users.
▶ Install programs and dependencies.
▶ Health monitoring.
▶ Restart failed machines.

6/16 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Workloads

▶ End-user-facing services.
▶ Sensitive to latency.
▶ Usually short-lived: us to sub-second

▶ Batch jobs.
▶ Take longer time to complete: seconds to days
▶ Not sensitive to short-term performance fluctuations.

▶ The workload mix varies across applications and over time.

7/16 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Job and Task Management

▶ Each job has a name, an owner, and the number of tasks.
▶ Each job can in addition have constraints.

▶ Force its tasks to run on machines with particular attributes
like processer type and OS version.

▶ Hard constraints must be satisfied; soft one are preferences.
▶ Each task maps to a set of Linux processes running in a

container on a machine.
▶ Task specifies its resource requirement.
▶ Task also knows its index within the job.

▶ Jobs and tasks in the system are in one of the three states:
Pending, Running, Dead.
▶ Users can submit new jobs or resubmit Dead jobs, which move

into Pending state if accepted.
▶ Users can kill Pending and Running jobs into Dead state.
▶ Users can update Pending and Running jobs without

interrupting them.
▶ Borg takes care of the rest, e.g. to schedule a Pending job into

Running state, and move jobs to Dead for failures.
8/16 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Quota and Priority

▶ Each job has a priority.
▶ Express the relative importance of jobs.
▶ e.g. monitoring > production > batch > best effort

▶ Quota is used to decide which jobs to admit for scheduling.
▶ A vector of maximum resource usage for a period of time

(typically months) at a given priority for an user.
▶ e.g. 20TB of memory for production for the rest of the month.
▶ Jobs with insufficient quota are rejected upon submission.

▶ Once admitted, higher priority jobs may preempt lower priority
ones to obtain resources.

▶ Higher priority quota is limited to available resources.
▶ However, users tend to overbuy higher priority quota to avoid

future shortages – waste of resource!
▶ Quota for lowest priority is set to infinite for all users.
▶ Jobs of lower priorities may be admitted but need to wait

resources to become available.

9/16 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Naming and Monitoring

▶ A “Borg name service” (BNS) name allows to identify a task
via the cell name, job name, and task index.
▶ The BNS name is further used in the DNS name for the task.

▶ Almost every task uses its own HTTP server to report its
health and performance metrics.
▶ Borg restarts a task if its HTTP server stops to respond.
▶ Monitoring tools track these data for visualization and

notifications.

10/16 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Borg Architecture

▶ Recall that for each job there will be a Borg cell which
includes all machines the job runs on.

▶ Each Borg cell has a controller named Borgmaster.
▶ Consist of two processes: the main Borgmaster process and a

separate scheduler.

▶ Borglet, an agent process, runs on each machine in the cell.
▶ Start, stop, restart tasks and manage local resources.

▶ The Borgmaster main process interfaces with users and
Borglets, and manages states for tasks and machines.
▶ With multiple replicas supported by Paxos consensus.
▶ These replicas stores checkpoints, which consist of state

snapshots and change logs at a point in time.
▶ Checkpoints are used for fault recovery, troubleshooting, offline

simulation etc.

11/16 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Scheduling

▶ Once a job is accepted by the Borgmaster main process, its
tasks are queued for scheduling by the scheduler.

▶ The scheduler needs to evaluate task-machine relationships to
schedule tasks to machines.

▶ Feasibility checking: a task is feasible to run on a machine if
there are sufficient available resources.
▶ Plus additional constraints from the job.
▶ May consider to evict lower-priority tasks.

▶ Scoring: decide which tasks to run if many are feasible and
decide where to run them.
▶ Consider priority and fairness, data and package availability,

power and failure domains, packing quality for load spike etc.

12/16 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Optimizations for Scalability

▶ Functional partitioning: use separate threads for Boglet to
Borgmaster communications and read-only queries.
▶ Sharding further distributes these works to replicas.

▶ Score caching: recompute scores for tasks and machines only
when there are changes.

▶ Equivalence classes: handle similar tasks in a job as a whole
so that feasibility checking and scoring only need to run once.

▶ Relaxed randomization: for a single task, avoid to evaluate it
on all machines for feasibility checking and and scoring.
▶ If enough machines evaluated following a random order are

feasible, then the best score so far is good enough.

13/16 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Techniques for Availability

▶ Keep tasks running even if Borgmaster or Boglets are down.
▶ Automatically reschedule evicted tasks

▶ Reduce correlated failures by spreading tasks of a job across
failure domains such as machines, racks, and power domains.

▶ Rate-limit to find new machines for tasks as it could be either
due to large-scale machine failure or network partitioning.

▶ Avoid repeating task-machine schedulings that lead to crash.

▶ Limit task disruptions within a job during maintenance.

▶ Use idempotent operations to support retries.

14/16 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Isolation

▶ Security isolation is achieved by a combination of Linux
chroot jail, cgroup (container), and VM for software from
various sources.

▶ Performance isolation is supported via containers.
▶ In order to limit resource usages of tasks.
▶ Use appclass to indicate needs of tasks: latency-sensitive vs

batch.
▶ Separate compressible resources like CPU and I/O bandwidth,

from non-compressible resources like memory capacity.
▶ Compressible resources can be reclaimed by rate-limiting.
▶ Kill tasks requiring more non-compressible resources than

allowed, or when such resources are over-committed.

▶ Improve standard Linux CPU scheduler for both low latency
and high utilization.

15/16 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Summary

▶ People learned a lot from building Borg to support cluster
computing needs in Google, which are eventually applied in
the development of Kubernetes.

16/16 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT


	Borg

