
ECE 473/573
Cloud Computing and Cloud Native Systems

Lecture 08 Transaction Log

Professor Jia Wang
Department of Electrical and Computer Engineering

Illinois Institute of Technology

September 16, 2024

1/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Outline

Transaction Log

Implementing a Transaction Log File

2/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Reading Assignment

▶ This lecture: 5

▶ Next lecture: 4

3/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Outline

Transaction Log

Implementing a Transaction Log File

4/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Services as Finite State Machines

▶ Computations can be modeled as finite state machines (FSMs)
▶ Networked services like microservices

▶ React to requests received via the network.
▶ Update internal data structures and objects as needed.
▶ Generate responses to be sent via the network.

▶ Services as FSMs
▶ State: data model stored in data structures and objects.
▶ Initial state: initial values of variables and objects.
▶ Input: requests
▶ Output: responses
▶ State transitions: function and method calls

5/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Persisting Resource State

▶ Objective: allow applications and services to start from where
they were, after being shutdown.
▶ In particular unexpected shutdown due to faults and failures.

▶ Delegate to another service that will be able to handle
persistence.
▶ E.g. a database service that supports the data model.
▶ A good choice in practice but doesn’t answer the fundamental

problem.

▶ Make use of persistent storage devices
▶ E.g. hard drives and SSDs where only binary blocks are

supported.
▶ A more fundamental problem we need to study today.

6/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Persisting Resource State as Binary Blocks

▶ Option 1: Direct State Storage
▶ Encode data structures and objects into a binary format that

can be decoded later.
▶ Intuitive but require efforts to design algorithms for individual

data structures and objects.

▶ Option 2: Transaction Log
▶ Store all requests as binary data in the order of their arrival.
▶ Compute state from the initial state and the stored requests.
▶ To encode requests is usually simple since they are just names

of functions and methods plus their arguments.

7/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Performance Considerations

▶ Storage devices are slow.
▶ Maximum throughput can only be achieved by sequential reads

and writes – storage devices are able to optimize for such cases.
▶ Random accesses are limited by latency, resulting in much

smaller available throughput.

▶ Direct State Storage
▶ Random access to the binary data is required to avoid encoding

and saving the whole state every time there is an update.
▶ Need to reduce random accesses – not easy.

▶ Transaction Log
▶ To store requests as they arrive only requires sequential writes.
▶ To compute the state requires only sequential reads.
▶ Nevertheless, to store all requests may require a lot of storage,

and to read and process them may require a lot of time.

8/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Scalability Considerations

▶ Size and throughput of storage services can be improved by
horizontal scaling.
▶ Replication improves read throughput by making data available

from multiple servers.
▶ Sharding improves write throughput by partitioning data into

different servers.

▶ Sharding is usually not quite difficult.
▶ For replication,

▶ Direct State Storage
▶ Too costly to replicate the whole state frequently.
▶ How to only replicate updates?

▶ Transaction Log
▶ Replicate requests by forwarding them to other servers.
▶ Each server can then compute the state by themselves.

9/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Resilience Considerations

▶ Possible faults and failures.
▶ Hardware failure causing loss of data.
▶ Power failure in the middle of saving binary data.

▶ Replication helps to resolve issues of loss of data.
▶ But replication won’t help if it corrupts data.

▶ For power failures,
▶ Direct State Storage

▶ If there is a power failure when updating the binary data, then
it is very difficult to tell what data is changed.

▶ This may lead to data corruption that cannot be repaired.

▶ Transaction Log
▶ Storing new requests only requires to append data and will not

overwrite existing data for past requests.
▶ If there is power failure, either the new request is stored

successfully or there is some extra data at the end that can be
detected and removed without much efforts – data corruption
can be avoided.

10/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Discussions

▶ Transaction log provides better scalability and resilience.
▶ Transaction log helps troubleshooting.

▶ Making it possible to reproduce all system transactions.

▶ Restarting a service using transaction log may take more time
than that using direct state storage.
▶ Need time to read and process all past requests to compute

the current state.

▶ Practical solutions combine the two options to make
trade-offs.
▶ As we will discuss for distributed database systems.

11/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Outline

Transaction Log

Implementing a Transaction Log File

12/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Transaction Log File for Key-Value Store

▶ To support two operations Put, Delete.
▶ There is no need to record Get as it doesn’t change the state.

▶ File format
▶ Each request is encoded into a line.
▶ Each line contains four fields delimited by tabs.
▶ Sequence number: monotonically increasing to represent the

order of arrival.
▶ Event type: PUT or DELETE
▶ Key
▶ Value: for PUT only.

▶ Additional considerations.
▶ Key/Value cannot contain tabs or newline characters.
▶ A line at the end of the file without a newline character

indicating a corrupted line that should be removed.

13/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Transaction Logger

type TransactionLogger interface {

WriteDelete(key string)

WritePut(key, value string)

Err() <-chan error

ReadEvents() (<-chan Event, <-chan error)

Run()

}

▶ An interface to support transaction log.

▶ WriteDelete and WritePut record requests.
▶ ReadEvents reads past requests when the service restarts.

▶ Communication through channels: <-chan Event is a channel
of Events where past requests can be read out.

▶ Reduce memory usage by not reading and storing all past
requests at the same time.

▶ Run the logger in its own threads with channels.
▶ Avoid racing conditions from multiple RESTful requests

without using locks.

14/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Implementing File Based Transaction Logger

type FileTransactionLogger struct {

events chan<- Event // Write-only channel for sending events

errors <-chan error // Read-only channel for receiving errors

lastSequence uint64 // The last used event sequence number

file *os.File // The location of the transaction log

}

func NewFileTransactionLogger(filename string) (TransactionLogger, error) {

file, err := os.OpenFile(filename, os.O_RDWR|os.O_APPEND|os.O_CREATE, 0755)

...

return &FileTransactionLogger{file: file}, nil

}

▶ Implement FileTransactionLogger to store requests in file
▶ Lowercase members are private.
▶ Members not explictly initialized are set to nil or 0.
▶ Need to implement the 5 methods from the

TransactionLogger interface.

▶ We will omit error handling to focus on functionalities when
necessary.

15/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Read Past Requests

func (l *FileTransactionLogger) ReadEvents() (<-chan Event, <-chan error) {

scanner := bufio.NewScanner(l.file) // Create a Scanner for l.file

outEvent := make(chan Event) // An unbuffered Event channel

outError := make(chan error, 1) // A buffered error channel

go func() {

var e Event

defer close(outEvent) // Close the channels when the

defer close(outError) // goroutine ends

for scanner.Scan() {

line := scanner.Text()

if err := fmt.Sscanf(line, "%d\t%d\t%s\t%s",

&e.Sequence, &e.EventType, &e.Key, &e.Value); err != nil {

outError <- fmt.Errorf("input parse error: %w", err)

return

}

l.lastSequence = e.Sequence // Update last used sequence #

outEvent <- e // Send the event along, block if channel is full

}

...

}()

return outEvent, outError

}

▶ Send event e to channel outEvent by outEvent <- e.
16/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Write Requests to File

func (l *FileTransactionLogger) WritePut(key, value string) {

l.events <- Event{EventType: EventPut, Key: key, Value: value}

}

func (l *FileTransactionLogger) WriteDelete(key string) {

l.events <- Event{EventType: EventDelete, Key: key}

}

func (l *FileTransactionLogger) Run() {

l.events = make(chan Event, 16) // Make an events channel

l.errors = make(chan error, 1) // Make an errors channel

go func() { // start a goroutine that runs in a single thread

for e := range l.events { // Retrieve the next Event

l.lastSequence++ // Increment sequence number

_, err := fmt.Fprintf(l.file, "%d\t%d\t%s\t%s\n",

l.lastSequence, e.EventType, e.Key, e.Value)

...

}

}

}()

}

▶ Thread confinement: multiple threads may call WritePut and
WriteDelete but only a single thread will handle them.
▶ Synchronization via a channel without a lock.

17/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Initialization

var logger TransactionLogger

func initializeTransactionLog() error {

logger, err := NewFileTransactionLogger("transaction.log")

...

events, errors := logger.ReadEvents()

e, ok := Event{}, true

for ok && err == nil {

select { // use select to read from multiple channels

case err, ok = <-errors: // Retrieve any errors

case e, ok = <-events:

switch e.EventType {

case EventDelete: // Got a DELETE event!

err = Delete(e.Key)

case EventPut: // Got a PUT event!

err = Put(e.Key, e.Value)

}

}

}

logger.Run()

return err

}

func main() {

err := initializeTransactionLog()

...

18/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Recording PUT Requests

func keyValuePutHandler(w http.ResponseWriter, r *http.Request) {

vars := mux.Vars(r)

key := vars["key"]

value, err := ioutil.ReadAll(r.Body)

defer r.Body.Close()

...

err = Put(key, string(value))

...

logger.WritePut(key, string(value))

w.WriteHeader(http.StatusCreated)

log.Printf("PUT key=%s value=%s\n", key, string(value))

}

▶ DELETE is recorded in a similar way.

19/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Summary

▶ Use transaction logs to store states indirectly for better
scalability and resilience.

20/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

	Transaction Log
	Implementing a Transaction Log File

