
ECE 473/573
Cloud Computing and Cloud Native Systems

Lecture 06 Containerization

Professor Jia Wang
Department of Electrical and Computer Engineering

Illinois Institute of Technology

September 9, 2024

1/16 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Outline

Containerization

Docker Introduction

2/16 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Reading Assignment

▶ This lecture: Containerization

▶ Next lecture: 5

3/16 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Outline

Containerization

Docker Introduction

4/16 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Applications and Virtual Machines

▶ Is it a good idea to run a single application per virtual
machine?
▶ Consider cloud native applications.
▶ What about operation and maintenance?
▶ What about isolation?
▶ What about performance and utilization?

▶ Cloud native application architecture
▶ Loosely coupled scalable microservices.
▶ Use microservices from third parties to reduce developement

time and cost.
▶ Running multiple instances of the same microservice to meet

performance demand.

▶ How to deploy microservices to VMs?
▶ Need multiple VMs for scalability.
▶ Without renting more than enough VMs.

5/16 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Microservice Deployment Considerations

▶ Use scripts to automate the installation process.
▶ Install microservices and dependencies.
▶ Speedup installation by providing a pre-built system.

▶ Microservices may impact application performance differently.
▶ Need to promptly start more instances for some microservices

to meet rising demand.
▶ Leverage overprovisioning to improve utilization by running

some microservices on the same server.

▶ Services may need root privilege to access certain resources.
▶ But there could be bugs or misconfigurations.
▶ Running multiple microservices in a single VM is risky.

6/16 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Nested Virtualization

▶ Run virtual machines within other virtual machines.
▶ Rent a VM and deploy microservices into their own nested VMs
▶ Isolation achieved and overprovisioning is possible.

▶ VM images are large because they include the whole OS.
▶ Consume a lot of resource to transmit.

▶ Starting a VM need to boot the whole OS and is slow.
▶ Nested VMs introduce a lot of performance overhead.

▶ Two hypervisors and two OSes for a single microservice.
▶ Very difficult to optimize as only the inner OS can understand

the behavior of the microservice.

▶ Can we optimize if the OS running in the VM and the OSes
running in the nested VMs are the same?

7/16 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Containerization

▶ Lightweight virtualization
▶ Virtualize the OS kernel instead of the whole hardware system.
▶ Guest OS shares the kernel with the host OS so they need to

be similar, e.g. different versions and distributions of Linux.

▶ Container: a guest OS with a microservice or other
applications running inside.

▶ Container image: a package to start a container.
▶ Containerized guest OS
▶ A file system including programs and data.

▶ Container runtime: manage containers and container images.

▶ Container orchestration: manage containerized microservices
and applications across multiple (virtual) servers.

8/16 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Containers vs. VMs

▶ Container images are smaller than VM images.
▶ No need to include the whole guest OS – the kernel is

available from the host.

▶ Starting a container is faster than starting a VM.
▶ No need to boot the guest OS – the kernel is already running.

▶ Containers has less performance overhead.
▶ Shared kernel means that processes in a container actually run

on top of the host OS directly.

▶ Overprovisioning is more effective with containers.
▶ Host OS has knowledge of processes in containers so can

optimizes better than hypervisor.

▶ Containers are isolated by the host OS kernel.
▶ Weaker than isolation provided by hypervisor.
▶ Sufficient for most use cases where the containers serve the

same application.

9/16 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Additional Features

▶ With containerization technologies, virtualization technologies
focuses more on emulation and isolation.

▶ Containerization provide additional features to simplify
operation and maintenance of microservices.
▶ Scripting to containerize microservices and applications.
▶ Flexible system, storage, and network configurations.
▶ Version control and rollbacks.
▶ Pre-built container images.

10/16 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Outline

Containerization

Docker Introduction

11/16 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Docker Ecosystem

▶ Docker: open-source container runtime.
▶ With docker container and docker images.

▶ Docker registry: a centralized repository for docker images.

▶ Docker engine: the core runtime for running containers.
▶ Container orchestration platforms

▶ Docker Compose: manage docker containers on a single host.
▶ Docker Swarm: manage docker containers on multiple hosts.
▶ Kubernetes (k8s): support docker and other container

runtimes.

12/16 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



A Few Docker Commands

▶ Work with docker images.
▶ docker pull: download a docker image from a registry.
▶ docker build: create a docker image from a Dockerfile.
▶ docker images: list docker images available locally.

▶ Work with docker containers.
▶ docker run: start a docker container from a docker image.
▶ docker exec: execute command in a docker container.
▶ docker ps: list docker containers.

13/16 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Dockerfile

▶ A script to create docker images in textual format.
▶ Make docker images reproducible.
▶ Can be easily managed in a version control system.

▶ Common contents
▶ Base image: start from an image with existing guest OS

and/or packages installed.
▶ Guest OS scripts: additional package installations and OS

configurations.
▶ Environment setup: enable containers to interact with host OS

for configurations, permissions, storage, networking, etc.

14/16 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Starting a Docker Container

▶ docker run uses a lot of options to control how a docker
container should start.

▶ --name specifies a name for the container so one can find it
easily in docker ps.

▶ -p publishes port from the container so one can access
networked services from the host OS or externally.

▶ -v maps a host directory to the container so files can be
shared between the two.

▶ -e sets environment variables in the container to configure
microservices and to pass sensitive information.

▶ -it allows one to interact with the running container via a
terminal and -d prevents so.

15/16 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Summary

▶ Containerization provides a lightweight virtualization solution.

▶ Guest OS in a container shares the kernel with the host OS.

▶ Containerize an application or a microservices by first creating
a container image and then starting a container from it.

16/16 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT


	Containerization
	Docker Introduction

