
ECE 473/573
Cloud Computing and Cloud Native Systems

Lecture 04 Functions and OOP in Go

Professor Jia Wang
Department of Electrical and Computer Engineering

Illinois Institute of Technology

August 28, 2024

1/16 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Outline

More on Functions

Structs, Methods, and Interfaces

2/16 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Reading Assignment

▶ This lecture: 2,3

▶ Next two lectures: Virtualization and Containerization.

3/16 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Outline

More on Functions

Structs, Methods, and Interfaces

4/16 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Error Handling

func SomeFunc() (int, error) {

return 0, fmt.Errorf("error %d", 42)

}

func Error() {

i, err := SomeFunc()

// i := SomeFunc() // won’t compile

// i, _ := SomeFunc() // also ok

if err == nil {

fmt.Printf("Got %d.\n", i)

} else {

fmt.Printf("Error %v.\n", err)

}

}

▶ Go functions can return multiple results.
▶ You are required to use all of them or cannot use any of them.

▶ This feature is leveraged for error handling in Go.
▶ Errors are usually returned as the last result, and you cannot

ignore them, unless using the blank identifier _.

5/16 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Variadic Functions

func Sum(a ...int) int {

sum := 0

for _, i := range a {

sum += i

}

return sum

}

func Variadic() {

fmt.Printf("sum(1,3,4)=%d\n", Sum(1, 3, 4))

fmt.Printf("sum(1,2,3,4,5)=%d\n", Sum(1, 2, 3, 4, 5))

}

▶ Variadic functions allow to take any number of arguments.
▶ Of the same type.
▶ Must be the last ones in the argument list.

▶ In the function, the variadic argument is noted by ... before
its type, and is treated as a slice.

6/16 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Anonymous Functions

func SortIndex(names []string) []int {

indices := make([]int, 0)

for i := range names {

indices = append(indices, i)

}

sort.Slice(indices, func(l, r int) bool {

lstr := names[indices[l]]

rstr := names[indices[r]]

return lstr < rstr

})

return indices

}

func Lambda() {

names := []string{"Dave", "Bob", "Alice", "Clair"}

for _, index := range SortIndex(names) {

fmt.Printf("%s,", names[index])

}

fmt.Printf("names=%v\n", names)

}

▶ Functions can be created on the fly and refer to any variables.
▶ As supported by most other languages nowadays except C.
▶ They are anonymous since they don’t have a name.

7/16 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Defer

func Defer() {

file, err := os.Create("foo.txt")

if err != nil {

log.Print(err)

return

}

defer func() {

file.Close()

fmt.Println("File closed.")

}() // the ending () actually calls the function

for i := 0; i < 100; i++ {

fmt.Fprintf(file, "%d\n", i)

}

}

▶ defer allows a statement to be executed whenever the
function returns.
▶ Make it much easier to handle complex resource management

logic with error handling (not available for C).

▶ Note the use of the extra () to call the anonymous function.

8/16 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Outline

More on Functions

Structs, Methods, and Interfaces

9/16 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Structs

type Vertex struct {

X, Y float64

}

func Struct() {

v := Vertex{X: 1, Y: 2}

fmt.Printf("%v, ", v)

v.X, v.Y = 3, 4

fmt.Printf("%+v\n", v)

}

▶ struct aggregates related variables together into an object
▶ As a foundation feature to OOP languages like C++ and Java.

▶ Use %v to print values of members.
▶ %+v prints member names in addition.

10/16 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Methods

func (v *Vertex) Move(dx, dy float64) {

v.X += dx

v.Y += dy

}

func (v Vertex) Norm() float64 {

return math.Sqrt(v.X*v.X + v.Y*v.Y)

}

func Methods() {

v := Vertex{X: 1, Y: 2}

v.Move(1, 2)

fmt.Printf("%+v, norm=%.3f\n", v, v.Norm())

}

▶ Methods are functions attached to types.
▶ Via an extra receiver argument before the function name.

▶ Pointer receivers allow to modify the object.
▶ Work as this for C++/Java.
▶ Methods with poiter receivers behave the same as methods in

other OOP languages.

▶ Value receivers apply to a copy of the object.
▶ A very special feature of Go (and C).

11/16 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Interface

type Movable interface {

Move(dx, dy float64)

}

func MoveAll(dx, dy float64, movables []Movable) {

for _, m := range movables {

m.Move(dx, dy)

}

}

func Interface() {

ms := []Movable{}

ms = append(ms, &Vertex{X: 1, Y: 2})

MoveAll(10, 20, ms)

}

▶ interface specifies what methods should be provided for an
object to implement it.

▶ Functions can access those objects via interface and only
use the methods defined within.
▶ No knowledge of the actual type, less couplings!

▶ interface usually works with pointer receivers so need to
convert from a pointer to the object.

12/16 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Duck Typing

type Circle struct {

X, Y, R float64

}

func (c *Circle) Move(dx, dy float64) {

c.X += dx

c.Y += dy

}

func Interface() {

ms := []Movable{}

ms = append(ms, &Vertex{X: 1, Y: 2})

ms = append(ms, &Circle{X: 3, Y: 4, R: 5})

MoveAll(10, 20, ms)

}

▶ ”If it walks like a duck and it quacks like a duck, then it must
be a duck”

▶ A type implements an interface by implementing all require
methods in the interface.
▶ With the exact name, arguments, and returned results.
▶ No need to inherit or to mention the interface explicitly.

13/16 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Stringer

func (c Circle) String() string {

return fmt.Sprintf("Circle(%.3f,%.3f,r=%.3f)", c.X, c.Y, c.R)

}

func (v Vertex) String() string {

return fmt.Sprintf("Vertex(%.3f,%.3f)", v.X, v.Y)

}

func Interface() {

ms := []Movable{}

ms = append(ms, &Vertex{X: 1, Y: 2})

ms = append(ms, &Circle{X: 3, Y: 4, R: 5})

MoveAll(10, 20, ms)

fmt.Printf("%v\n", ms)

}

▶ %v works with the Stringer interface.

▶ A type can implement it by implementing the
String() string method.

14/16 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Struct Embedding

type Circle2 struct {

Vertex

R float64

}

func (c *Circle2) Move(dx, dy float64) {

c.Vertex.Move(dx, dy)

}

func (c Circle2) String() string {

return fmt.Sprintf("Circle(%.3f,%.3f,r=%.3f)", c.X, c.Y, c.R)

}

func Embedding() {

ms := []Movable{&Circle2{Vertex: Vertex{X: 3, Y: 4}, R: 5}}

MoveAll(10, 20, ms)

fmt.Printf("%v\n", ms)

}

▶ struct can have other structs as members.
▶ You don’t have to name them.

▶ Refer to the anonymous member as a whole by its type.
▶ Refer to members of the anonymous member directly.

▶ Very similar to how base classes work for C++ and Java.
▶ Except when implementing a base interface in C++/Java.
▶ But Go don’t need that for implementing interfaces!

15/16 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Summary

▶ Go provides anonymous functions and defer that are
available for most other languages but not C.

▶ Go embraces modern OOP practices by separating
composition (embedding) and interface-based design, instead
of using inheritance for both.

▶ We will cover other language features like concurrency as the
course goes when needed.

16/16 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT


	More on Functions
	Structs, Methods, and Interfaces

