
ECE 473/573
Cloud Computing and Cloud Native Systems

Lecture 03 Go Introduction

Professor Jia Wang
Department of Electrical and Computer Engineering

Illinois Institute of Technology

August 26, 2024

1/25 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Outline

Go Language Overview

Programming in Go

2/25 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Reading Assignment

▶ This lecture: 2,3
▶ Please install VSCode and Go following the instructions on:

https://docs.microsoft.com/en-us/azure/developer/

go/configure-visual-studio-code
▶ Clone our sample code from

https://github.com/wngjia/ece573-go

▶ Next lecture: 2,3

3/25 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

https://docs.microsoft.com/en-us/azure/developer/go/configure-visual-studio-code
https://docs.microsoft.com/en-us/azure/developer/go/configure-visual-studio-code
https://github.com/wngjia/ece573-go

Outline

Go Language Overview

Programming in Go

4/25 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Go

▶ The Go programming language.
▶ Designed at Google in 2007 to improve programming

productivity in an era of multicore, networked machines and
large codebases.

▶ Version 1.0: March 2012

▶ Modernization of C for simplicity, safety, and readability.
▶ Package management, garbage collection, concurrency, etc.
▶ Simplified C syntax with standard tool to format code.
▶ Exactly the same value semantics as C.
▶ Adopt common C patterns to support array/slice and OOP.

5/25 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Composition and Structural Typing

▶ OOP helps to handle complexities in software development by
limiting the scope of the work.

▶ Modern OOP practices favor composition and interface-based
design over deep inheritance hierarchies.
▶ Avoiding use of a common base class, where changes are

difficult, improves flexibility and modularity.
▶ Use of interfaces encourages encapsulation and then reduces

couplings between class implementations.
▶ Testing becomes easier for a smaller set of classes and

interfaces that depending on each other.

▶ Surprisingly (or not so surprisingly), many of such approaches
have been widely used for system programming in C.
▶ Captured by Go to provide necessary abstractions.

6/25 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Comprehensibility, Memory Safety, and Performance

▶ Directly affect cost to develop and operate cloud software.

▶ Languages trade-off different between the three.

▶ C doesn’t have much feature to learn, has the best
performance, but is not quite safe for memory operations.

▶ C++ and Rust have the best performance with lifetime based
memory management but have a steep learning curve.

▶ Dynamic languages like Python are too slow although they are
easy to learn and have garbage collection for memory safety.

▶ Java achieves a good balance among the three.

▶ Go is somewhere near Java for the three, with less features to
learn but somewhat slower.

7/25 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Runtime Support

▶ Deploying applications on cloud benefit from a small runtime
for the underlying language.
▶ Need less time to download and install smaller runtimes.
▶ Need less memory for the runtime in addition to what the

application needs to use.

▶ Core C/C++ libraries are part of OS distribution and require
little additional memory.

▶ Java and dynamic languages require to download and install a
large runtime like JVM and need a lot more memory.

▶ Go benefits from static linking to standard C library so that it
requires very little runtime support as C/C++.

8/25 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Concurrency

▶ Concurrency makes it possible to simplify complex I/O logics
and to use multiple cores.
▶ A number of running threads communicate with each other via

shared-memory regions and message-passing channels.
▶ Concurrency is not among language features for most

languages designed in and before 1990’s.
▶ Rely on OS to provide a set of functions for accessing

shared-memory regions, e.g. C/C++/Java.
▶ Or not allow concurrency at all, e.g. Python and Javascript.

▶ Communications based on shared-memory, like locks, although
intuitive apparently, are prone to misuse and error.
▶ Languages like C++ and Java spend a lot of efforts to provide

concurrency at higher levels through message-passing.
▶ Still, this doesn’t prevent developers to overlook things like

locks and use them incorrectly.
▶ Go provides concurrency based on Communicating Sequential

Processes (CSP) as part of its language features.
▶ Developers are forced to give up locks and many other

mechanisms and have to use message-passing channels instead.
9/25 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Outline

Go Language Overview

Programming in Go

10/25 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Hello World

// hw/hw.go

package main

import "fmt"

func main() {

fmt.Println("Hello world!")

}

▶ Go uses the same entrypoint main as C.
▶ It has to be inside package main

▶ Save the code to hw.go and run it via go run hw.go

▶ Language features
▶ Both // and /**/ work for comments
▶ Use import instead of #include
▶ Use func to define a function
▶ No need to use ;
▶ { must be at the end of the line

11/25 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Variable

// swap/main.go

package main

import "fmt"

func main() {

var a int = 1

b := 2

fmt.Printf("before swap: a = %d, b = %d\n", a, b)

swap(&a, &b)

fmt.Printf("after swap: a = %d, b = %d\n", a, b)

}

▶ A variable can be defined using var and then initialized.
▶ Or you can use := to define and initialize a variable.

▶ Without the need to specify a type.
▶ The variable still has a type and cannot be changed.

▶ Usually, library names are lowercase while library functions are
uppercase.

12/25 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Pointer

// swap/swap.go

package main

func swap(pa, pb *int) {

*pa, *pb = *pb, *pa

}

▶ Pointers *T are addresses to variables of type T
▶ Allow you to change a variable outside of the current function.
▶ Same as C, use & to take address for a variable and use * to

refer to the variable using the pointer.

▶ Types can be omitted for the function parameters if they have
the same type.

▶ Multiple variables can be assigned at the same time.

13/25 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Go Module

▶ Since swap is in a different file as main, we cannot run this
more complicated program directly.

▶ Use go mod init swap to initialize a Go module to manage
multiple go files.

▶ Run it as go run .
▶ You can also debug it in VSCode or other IDEs.

14/25 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Array and Slice

// slice/slice.go

package main

import "fmt"

func main() {

var a [10]int

s := make([]int, 0)

for i := 0; i < 10; i++ {

a[i] = i

s = append(s, i*i)

}

for i, val := range s {

fmt.Printf("s[%d]=%d=%d*%d\n", i, val, a[i], a[i])

}

}

▶ Arrays like a, as those in C/C++/Java, are of fixed size.
▶ Slices like s are more flexible.

▶ Use make to create a slice with initial size.
▶ Use append to append an element to the end.

▶ Use [] to access elements using 0-based indices.
15/25 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

for Loops

for i := 0; i < 10; i++ {

a[i] = i

s = append(s, i*i)

}

for i, val := range s {

fmt.Printf("s[%d]=%d=%d*%d\n", i, val, a[i], a[i])

}

▶ The most simple for loops use three statements
for initialization; condition; postcondition
▶ Similar to C/C++/Java but no parentheses
▶ You’ll need to use i++ instead of ++i

▶ The range for loops allow to obtain both the index and the
element at the same time.

▶ Use break to exit the loop.

▶ Use continue to exit the current iteration.

16/25 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

More for Loops

// a while loop

for condition {

...

}

// an infinite loop

for {

...

}

▶ There is no while or do while loop in Go. Every loop is a
for loop.

17/25 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

What is a slice?

func assign() {

a := []int{0, 1, 2, 3, 4}

b := a

b[0] = 100

fmt.Printf("after assign: a=%v, b=%v\n", a, b)

}

▶ A slice stores the address of the first element and the number
of elements.
▶ A memory area is allocated from the heap to store the

elements.
▶ No, you don’t need to call malloc, free, etc. like in C or

other languages.
▶ [] will be able to check if the index is out of bound or not.

▶ Assignment = will only copy the address and the length so
now a and b refer to the same memory area.

18/25 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Copy a Slice

func mycopy() {

a := []int{0, 1, 2, 3, 4}

b := make([]int, len(a))

copy(b, a)

b[0] = 100

fmt.Printf("after copy: a=%v, b=%v\n", a, b)

}

▶ The copy function is able to make a copy of the slice so that
you can have two slices referring to two separated memory
areas.

19/25 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Be Careful with Append

func myappend() {

a := []int{100}

// don’t do this

for i := 0; i < 10; i++ {

b := a

a = append(a, i)

b[0]++

fmt.Printf("append %d: a=%v, b=%v\n", i, a, b)

}

}

▶ append may or may not need to reallocate the memory area
used by a slice when appending a new elements.
▶ This behavior is the same as the realloc function in C.

▶ a and b could sometimes use the same memory area and
sometime not.
▶ Once append is called, don’t reuse a slice assigned from the

original slice.

20/25 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Slicing a Slice

func slicing() {

a := []int{0, 1, 2, 3, 4}

b := a[1:3]

c := a[:len(a)-1]

d := a[2:]

fmt.Printf("a=%v, b=%v, c=%v, d=%v\n", a, b, c, d)

}

▶ Use [begin:end] to slicing a slice.
▶ Half close half open (begin included, end excluded).
▶ begin = 0 if omitted, end = len() if omitted.
▶ No negative indices like in Python.

▶ Slicing is essentially pointer arithmetics in C so all the slices a,
b, c, d now share the same memory area.
▶ What if we change a[2] to 100? b[1], c[2], and d[0] will

all change to 100
▶ If we append to a later, We should not use b, c, and d any

more!

21/25 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Branches

// rand/rand.go

package main

import (

"fmt"

"math/rand"

)

func main() {

d := rand.Float64()

if d < 0.4 {

fmt.Println("Win!")

} else if d > 0.6 {

fmt.Println("Lose!")

} else {

fmt.Println("Tie!")

}

}

▶ Similar to C/C++/Java but no parentheses.
▶ Recall that { must be at the end of the line
▶ If there is an else, then } must be on the same line as well.

22/25 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Map

// map/map.go

package main

import (

"fmt"

)

func main() {

months := make(map[string]int)

months["Jan"] = 1

months["Feb"] = 2

fmt.Printf("Jan is month %d.\n", months["Jan"])

...

▶ map[K]V allows to search for a value using a key.
▶ A hash table as in most other languages.
▶ K is the key type, don’t use float32/float64.
▶ V is the value type, can be anything.

▶ Use [] to insert key/value pairs and search for values.

23/25 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Map Membership Testing

fmt.Printf("Input a name: ")

var name string

fmt.Scanf("%s", &name)

index, ok := months[name]

if !ok {

fmt.Printf("Unknown month %v.\n", name)

} else {

fmt.Printf("%v is month %d.\n", name, index)

}

▶ When searching for values, [] returns an extra result
optionally.
▶ The first one is the value, if the key exists.
▶ The second one indicates if the key exists or not.

24/25 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Summary

▶ Why Go?
▶ A modern language created for cloud computing.

▶ Tutorials can be found at https://go.dev/doc/tutorial/

▶ Use the Go Playground https://go.dev/play/

25/25 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

https://go.dev/doc/tutorial/
https://go.dev/play/

	Go Language Overview
	Programming in Go

