
ECE 473/573
Cloud Computing and Cloud Native Systems

Lecture 02 Cloud Native Systems

Professor Jia Wang
Department of Electrical and Computer Engineering

Illinois Institute of Technology

August 21, 2024

1/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Outline

Cloud Native Systems

2/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Reading Assignment

▶ This lecture: 1,6

▶ Next lecture: 2,3

3/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Outline

Cloud Native Systems

4/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Networked Applications

▶ In early days of computing when there is only mainframes, all
programs ran and all data was stored in a single location.

▶ With inexpensive network-connected PCs that can perform
non-trivial tasks, multitiered architecture was introduced.
▶ Data management tier: database server
▶ Business logic tier: web and application server
▶ Presentation tier: PC (and mobile devices)
▶ Connected via networks and can be replaced independently.

▶ Complexity of software increases beyond what can be
managed by a single developer team efficiently.
▶ Tiers, especially business logics, are decomposed into

microservices.
▶ These systems are now distributed systems, which behave very

differently than a single or a few interconnected computers.

▶ SaaS and IaaS business practices emerge.

5/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Scaling

▶ With SaaS practices, it is possible to have exponential growth
in customers.
▶ No need to distribute software physically, e.g. via disks.
▶ Can the services scale to meet the growth as soon as possible?
▶ Can the services respond to the demand dynamically to

maximize the profit?

▶ With IaaS offerings, especially S3 and EC2 from AWS, scaling
seems economically viable.
▶ No need to build facilities and buy physical servers.

▶ Scaling is not easy.
▶ Managing those resources manually at such scale is impossible.
▶ Components in a distributed system, e.g. servers and nerwork

connections, will fail.
▶ Most distributed systems will have nondeterministic behaviors

– it is very difficult to reproduce the same outputs even if the
inputs are the same.

6/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



What Is Cloud Native?

▶ A paradigm to design systems that can fully utilize the cloud
computing architecture.
▶ Promoted by the Cloud Native Computing Foundation.

▶ Cloud native attributes
▶ Scalable
▶ Loosely coupled
▶ Resilient
▶ Manageable
▶ Observable

7/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Scalability

▶ The ability of system to continue to behave as expected in the
face of significant upward or downward changes in demand.
▶ Not necessarily a must have for initial system design.
▶ But hard to remedy for at a later time.

▶ Vertical scaling
▶ Improve performance of an instance (server or virtual machine)

by adding cores, memory, storage, etc.
▶ Usually requires no software change but improvements are

limited due to physical limites.

▶ Horizontal scaling
▶ Improve performance of the system by using more instances.
▶ Increased complexity in system design and management.

▶ If the service need to be scaled by hundreds or thousands
times, horizontal scaling is the only choice.
▶ Unfortunately, not all computations can be horizontally scaled.
▶ In particular computations as finite state machines whose state

cannot be decomposed, e.g. counting.

8/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Loose Coupling

▶ Components in a system have minimal knowledge of any other
components.
▶ Thus a component can be changed without requiring to

change other components.
▶ E.g. web servers and web browsers.

▶ Components would need to communicate to each other using
certain standard protocols.

▶ Note that the coupling needs to be loose and the knowledge
need to be minimal.
▶ If every component need to communicate with and thus has

knowledge of many other components, the system will become
a distributed monolith – a nightmare of microservices.

9/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Resilience

▶ A measure of how well a system withstands and recovers from
errors and faults.
▶ A resilient system continues operating correctly, possibly at a

reduced level, rather than failing completely.

▶ Failures result from faults
▶ Any system can contain defects or faults, e.g. bugs.
▶ Faults can lead to errors, which can cause failures.
▶ Failures can propagate from components to components, and

then the whole system.

▶ Build resilient systems
▶ Prevention of all faults is unrealistic and unproductive.
▶ Should assume components will fail and limit their impacts.
▶ Use mechanisms like redundancy, circuit breakers, retry logic,

intentional failure.

10/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Manageability

▶ The ease of modifying system behavior to ensure security, and
smooth operation, and to meet changing requirements.
▶ Without altering its code.

▶ For example, consider a system with a service and a database.
▶ How to update the reference to the database in the service?
▶ What if multiple versions of services and databases need to

coexist for troubleshooting and performance evaluation.
▶ Make use of environment variables instead of hardcoding.

▶ Manageable systems adapt to changing requirements
▶ Feature flags
▶ Credential rotation
▶ Component deployment (upgrades and downgrades)
▶ Instead of ad hoc code changes

11/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Observability

▶ The ability to answer unanticipated questions quickly with
minimal prior knowledge and without reinstrumentation.
▶ Make it possible to troubleshoot issues without reproducing

nondeterministic behaviors.
▶ In particular where an issue is.

▶ Observability in modern distributed systems
▶ Build upon metrics, logging, and tracing.
▶ Collected data to deduct internal states from external outputs.

12/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Why Cloud Native?

▶ Dependability: produce dependable services in unreliable
environments to keep users happy.
▶ Availability: the ability of a system to perform its intended

function at a random moment in time, e.g. uptime
▶ Reliability: the ability of a system to perform its intended

function for a given time interval, e.g. MTBF
▶ Maintainability: the ability of a system to undergo

modifications and repairs.

▶ Developers can no longer just prioritize feature development
and leave dependability to system administrators.
▶ Fault prevention
▶ Fault tolerance
▶ Fault removal
▶ Fault forecasting

13/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Fault Prevention

▶ Good programming practices, e.g. test-driven development

▶ Language features, e.g. garbage collection

▶ Scalability ensures correct behavior as demand changes
significantly, but could be source of additional faults.

▶ Loose coupling reduces the risk of cascading failures as faults
propagate from one component to another.

14/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Fault Tolerance

▶ Resilience in two steps: error detection and recovery
▶ Seemingly simple case: retry failed requests.

▶ Will retrying cause more faults?

▶ Make use of redundancy: have multiple copies of critical
components.
▶ Will a majority vote serve both as mechanisms for error

detection and recovery?

15/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Fault Removal

▶ Source of faults
▶ Implemenation: human errors in system design and

development, i.e. bugs
▶ Environment: unexpected inputs or operation conditions.

▶ Verification and testing
▶ Remove faults at development time.

▶ Manageability
▶ Adapt to the environment: adjust resource usage, remedy

security issues, turn features on or off, etc.

16/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Fault Forecasting

▶ Observability helps to avoid guesswork on predicting future
behavior of the system

17/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



The Twelve-Factor App

▶ Early wisdoms on building web apps remain valid.

1. One codebase tracked in revision control, many deploys.

2. Explicitly declare and isolate (code) dependencies.

3. Store configuration in the environment.

4. Treat backing services as attached resources.

5. Strictly separate build and run stages.

6. Execute the app as one or more stateless processes.

18/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



The Twelve-Factor App (cont.)

7. Each service manages its own data.

8. Scale out via the process model.

9. Maximize robustness with fast startup and graceful shutdown.

10. Keep development, staging, and production as similar as
possible.

11. Treat logs as event streams.

12. Run administrative/management tasks as one-off processes.

19/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Summary

▶ Cloud native systems provide dependability on top of
unreliable cloud computing environments.

20/20 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT


	Cloud Native Systems

