
ECE 449 – Object-Oriented Programming and Computer Simulation
Fall 2016

Instructor: Professor Jia Wang
Office: 317 Siegel Hall
Phone: 312-567-3696
E-Mail: jwang@ece.iit.edu (Please start your email subject line with [ECE449].)

Prerequisites: CS 116 and (CS 350 or ECE 242).
You are REQUIRED to have previous experiences on the following topics:
• Computer programming: branch and loop, function, class.
• Data structure and algorithm: array, linked list, searching, sorting, recursion.
• Digital logic and computer organization: combinational and sequential circuits.
• Computer organization: memory and pointer, call stack and debugging.
If you haven’t been writing programs for a while, refer to the following book for introductory C++
programming. Note that this book discusses C++’11, which will be a little bit different from C++’98
that we learn in class.
• “Programming – Principles and Practice Using C++”

B. Stroustrup, Addison-Wesley, 2014. ISBN 978-0321-992789

Reasonable accommodations will be made for students with documented disabilities. In order to
receive accommodations, students must obtain a letter of accommodation from the Center for Disability
Resources and make an appointment to speak with me as soon as possible. The Center for Disability
Resources is located in the Life Sciences Building, room 218, 312-567-5744 or disabilities@iit.edu.

Class Time and Location: Thurs.: 6:25 PM – 9:05 PM, Perlstein Hall 131

Class Home Page: http://www.ece.iit.edu/~jwang/ece449-2016f/

Required Textbook:
• “Accelerated C++: Practical Programming by Example”

A. Koenig and B.E. Moo, Addison-Wesley, 2000. ISBN: 978-0201703535

Recommended Textbooks:
• “The C++ Programming Language: Special Edition”

B. Stroustrup, Addison-Wesley, 2000. ISBN: 978-0201700732
• “Design Patterns: Elements of Reusable Object-Oriented Software”

E. Gamma et al., Addison-Wesley, 1994. ISBN: 978-0201633610
• “The C++ Programming Language: 4th Edition”

B. Stroustrup, Addison-Wesley, 2013. ISBN: 978-0321563842

Course Summary: This course gives students a clear understanding of the fundamental concepts
of object-oriented design/programming (OOD/OOP) and how they are supported by the standard
C++ language (C++’98). Students will design a complex computer simulation program using these
concepts and modern software engineering practices.

Topics Covered:
• C++: core language and standard library.
• OOD/OOP: object semantics and class design, inheritance and polymorphism, design patterns.
• Computer simulation algorithms: logic simulation, event-driven simulation.
• Software engineering: Agile development.

1



Grading: Homeworks 6% / Final Exam: 24% / Projects: 95% (25% extra).
A: ≥ 90% / B: ≥ 80% / C: ≥ 60% / D (undergraduate only): ≥ 55%.

Homework and Project Policy: Late homeworks and projects will not be graded. Homeworks will
be graded based on general approach and completion, and solutions will be released shortly after due
date. Discussions on homeworks/projects are encouraged, but copying will call for disciplinary action.

Final Exam Policy: Close book, close note, cheat sheet allowed. Makeup exams will NOT be given,
except for extraordinary reasons.

Lecture Schedule (tentative):

No. Date Topic Chapters HW Out Project Due
1 8/25 Introduction 0 #1
2 9/1 Files and Strings 1, 2
3 9/8 Organizing Programs and Data 3, 4 #2 1.0 (Initial)
4 9/15 Sequential Containers 5, 6 1.1 (Final)
5 9/22 Project 2 Discussion: Syntactic Analysis
6 9/29 Associative Containers 7, 8 #3 2.0 (Initial)
7 10/6 Class Design 9 2.1 (Final)
8 10/13 Project 3 Discussion: Netlist Construction #4
9 10/20 Project 4 Discussion: Logic Simulation 3.0 (Initial)
10 10/27 Resource Management I 11
11 11/3 Inheritance and Polymorphism 13 #5 3.1 (Final)
12 11/10 Design Patterns
13 11/17 Resource Management II 12, 14 4.0 (Initial)
14 11/24 Thanksgiving
15 12/1 Event-Driven Simulation 4.1, 5 (Final)
16 12/5 – 12/10 Final Exam

Course Objectives (ABET)
After completing this course, the student should be able to do the following:

1. Identify objects and their interactions for computer simulation.

2. Utilize object lifetime for resource management considering object composition, inheritance, and
exception handling.

3. Understand typical computer simulation algorithms.

4. Reuse existing class libraries to improve code quality and productivity.

5. Utilize class invariants to design class types. Document and validate pre-conditions and post-
conditions via assertions.

6. Construct reusable class libraries using polymorphism.

7. Utilize design patterns when designing and reusing class libraries.

8. Design and implement a computer simulator following test-driven and iterative/incremental soft-
ware engineering practices.

2


