
ECE 443/518 – Computer Cyber Security
Lecture 25 Malware

Professor Jia Wang
Department of Electrical and Computer Engineering

Illinois Institute of Technology

November 18, 2024

1/27 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT



Outline

Malware

Stack Overflow

Blue Pill

2/27 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT



Reading Assignment

▶ This lecture: ICS 19

▶ Next lecture: Hardware Security

3/27 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT



Outline

Malware

Stack Overflow

Blue Pill

4/27 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT



Malware

▶ A piece of software running in a computer system that may
impact normal operation or cause damage.
▶ Virus, worm, adware, ransomware, etc.

▶ From the viewpoint of secure policy, the system is actually in
an insecure state.
▶ Computer systems are so complicated nowadays that human

being cannot really decide if a system state is secure or not.

▶ To make matters worse, malware may exploit errors and bugs
in OS, applications, and services to bypass access control.

5/27 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT



Life Cycle

1. Dormant phase
▶ Infect the host system.
▶ Survive reboot, removal, or even reinstallation.

2. Propagation phase
▶ Infect other systems via a shared media.

3. Triggering phase
▶ Being activated by various system or network events.
▶ Lay low to avoid detection.

4. Execution phase
▶ Perform predefined malicious behavior.

▶ Defense mechanisms can be designed to address various
portion of the life cycle.

▶ Attackers adapt to computing trend when creating malware.
▶ Skip and combine phases.

6/27 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT



Dormant Phase

▶ Infection: bypass existing access control mechanism.
▶ Exploit human ignorance or error via social engineering.
▶ Inject code via bugs.

▶ Survival: persistence of (binary) program
▶ Files: hidden files, fake system files, end of other files, etc.
▶ File systems: unused partition area, NTFS data streams, etc.
▶ Firmware: disk controller, network controller, etc.

▶ Defense
▶ Educate non-technical people.
▶ Improve system usability to reduce human error.
▶ Improve software quality to reduce bugs.
▶ Scan storage area for suspicious data.

7/27 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT



Propagation Phase

▶ Correspond to infection during dormant phase.
▶ Propagation consumes system and network resources and may

be detected by monitoring so.
▶ The most hostile malware will attempt to propagate silently as

much as possible without being caught.
▶ In practice, many malwares won’t care since they target at

common people.

▶ Defense: isolation and containment
▶ So infected or suspicious systems won’t cause harm to others.
▶ Via firewall, virtual machine, etc.

8/27 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT



Triggering Phase

▶ Persistence of the malware program ties to how it is triggered.
▶ Malware programs may also be triggered via remote control.

▶ E.g. coordinated for a DDoS attack.

▶ The malware would need to consume resource to detect
triggering events while laying low to avoid detection.
▶ Short burst: awake for a very short time everytime something

happens, e.g. as a browser plugin that runs everytime a page
loads.

▶ Long live: monitor system status continuously, e.g. as a fake
system process or reside in a valid system process.

▶ Defense: more places to scan for suspicious data.
▶ A scan could trigger the malware to stop the scan itself.
▶ Isolation and containment help if the malware is triggered

remotely.

9/27 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT



Execution Phase

▶ Damages
▶ Physical damage to components and attached devices, e.g.

CIH, Stuxnet.
▶ Exhaust resources, e.g. Morris worm.
▶ Data erasure, e.g. ransomware.
▶ Leakage of sensitive data or access right.

▶ Defense
▶ Fail-safe mechanisms for components and attached devices.
▶ Backup data.
▶ Isolation and containment.

10/27 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT



Layered Defense

▶ Multiple defense mechanisms are required to be integrated in
a layered fashion for a complex computer system.
▶ Users with different knowledge of technology and sense of

security.
▶ Systems running programs with different trust levels.

▶ Isolation and containment within a system.
▶ So an infected subsystem will have less chance impact others.
▶ Fine grained access control: programs are only granted

permissions to a minimal number of subsystems.

▶ Communication only via predefined interfaces.
▶ Explicit flow of information.
▶ Allow more focused efforts to locate bugs.

11/27 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT



Typical Malware: Trojan Horses

▶ Trojan Horses: a program with an overt (documented or
known) effect and a covert (undocumented or unexpected)
effect.

▶ Life cycle
▶ Trojan houses usually involve a lot of techniques for survival

and triggering.
▶ Trojan horses open doors for other programs to propagate and

execute.

12/27 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT



Typical Malware: Computer Viruses

▶ Virus: the malware cannot exist by itself and must attach to
existing programs.

▶ Infection: computer virus modifies other executable files
▶ Append itself to the end.
▶ Call it when the program starts.

▶ Infection simplifies dormant and triggering phases.
▶ But this makes scanning of suspicious data easier via use of

patterns and hashes.

▶ Propagation is usually achieved by infecting executables on
removable medias.
▶ Most OS are aware of such risk and usually will notify users so.

13/27 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT



Typical Malware: Computer Worms

▶ Worms propagate.
▶ Via network.

▶ How worms propagate?
▶ Buggy network service programs, in particular old unpatched

services with known vulnerabilities.
▶ Buggy browsers and careless email users.

▶ Worms by themselves usually do no harm during execution
other than exhausting resources.
▶ But attackers usually combine trojan horses with worms to

create malwares strong at dormant, propagation, and
triggering – opening doors to execute any malicious code.

14/27 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT



Outline

Malware

Stack Overflow

Blue Pill

15/27 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT



Stack Overflow

▶ A typical software bug.
▶ A service program runs at a higher trust level that allows

clients to access resources.
▶ Locally or remotely, both via predefined communication

channels and protocols for access control.

▶ Attacks as clients exploit bugs in the service program to inject
codes that run within it at the higher trust level.
▶ Effectively bypass access control mechanisms.

16/27 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT



The Call Stack

▶ Portion of the memory is managed as a stack to facilitate
function calls.
▶ Stack: last in, first out.

▶ The stack entries are organized logically as stack frames.
▶ Each stack frame contains information regarding a particular

function call.
▶ Arguments, return address, local variables.
▶ Details depend on the calling convention.

17/27 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT



Stack Frame Example

void test(int a) {

int v[10];

printf("%d\n", v[a]);

}

void caller() {

test(20);

printf("Done.\n");

}
▶ Assume all arguments are passed via the stack.
▶ When caller calls test

▶ Push 20 for the argument a.
▶ Push return address of test, i.e. address of

printf("Done.\n");.
▶ Jump to first instruction of test.

▶ Inside test
▶ Push 10 int for the local variable v.
▶ Visit stack to obtain a.
▶ Visit and print v[a].
▶ Pop 10 int to destroy the local variable v.
▶ Pop the return address and jump to it.

18/27 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT



The Vulnerability

void test(int a) {

int v[10];

printf("%d\n", v[a]);

}

void caller() {

test(20);

printf("Done.\n");

}
▶ But v only contains 10 elements, what does v[a] refer to for

a < 0 or a ≥ 10?
▶ The C language doesn’t check for that for performance

reasons.
▶ Depend on where stack grows.

▶ If stack grows down, e.g. on x86 processors.
▶ v[a] for a < 0 refers to a lower memory location, which

contains garbage not belonging to the stack.
▶ v[a] for a ≥ 10 refers to a higher memory location that may

be used by a stack entry.

19/27 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT



The Attack

void test(int a, int b) {

int v[10];

v[a] = b;

}

void caller() {

int a, b;

scanf("%d %d", &a, &b);

test(a, b);

printf("Done.\n");

}

▶ Attacks inject code by overwriting stack entries if the
implementation does not check input values.

▶ Those modified stack entries will be interpreted by other
portion of the program to trigger the actual code execution.

20/27 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT



Shellcode Exploit

▶ Modify portion of the stack to include a shellcode, e.g. a
small program.

▶ Modify the return address to point to the shellcode.
▶ When the function returns, the shellcode runs within the

original program.
▶ It could simply attack from there, or open doors for further

attacks, e.g. by creating an account if the original program
runs as root.

▶ Defense: executable space protection
▶ Mark the memory portion used by stack as non-executable.
▶ Supported by processor, enforced By OS

21/27 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT



Return-to-libc Attack

▶ Modify the return address to point to an existing function.
▶ E.g. one from libc where almost all programs make use of.

▶ Need to modify additional entries on the stack so that the libc
function is called with meaningful arguments.
▶ E.g. modify the return address and additional stack entries to

call system("/bin/sh") so that the attacker can access the
shell program.

▶ Defense: address space layout randomization (ASLR)
▶ Load functions to different addresses everytime so attackers

won’t know their addresses.
▶ Enforced when OS loads a program to execute.

22/27 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT



Other Similar Attacks

▶ Heap overflow attacks: modify stack indirectly by exploiting
buggy accesses to memory blocks allocated dynamically.

▶ Integer overflow attacks: access portion of memory through a
pointer not for such purpose.

▶ Many of such problems also cause software to fail in general –
we may borrow from software practices to reduce their
chances to happen.
▶ Use a safer language that checks indices for array visits and

that managers dynamic allocations automatically – actually
almost all languages designed in the past 30 years are doing so.

▶ Test a lot.

23/27 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT



Outline

Malware

Stack Overflow

Blue Pill

24/27 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT



Hypervisor and Virtual Machine

▶ For security purpose, we generally depend on virtual machines
to provide necessary isolation and containment.
▶ Modern OS does provide certain level of isolation between

kernel and applications.
▶ But they are mostly for accidental errors but not security risks.

▶ Virtual machines are supported by both hardware and a
special piece of software called hypervisor.
▶ Similar to OS, hypervisors make it possible to virtualize/share

hardware resources.
▶ Hypervisors are not as complicated as OS so that there will be

less chance to have buggy services.

▶ Since hypervisor controls the hardware, it knows anything
running on the processor.
▶ What if hypervisors are compromised?
▶ What if processors/hardware are compromised?

25/27 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT



Blue Pill

▶ A conceptual hypervisor-based malware.
▶ The malware itself is the hypervisor.

▶ Small in size, but may perform any operation on the OS
running on top of it.

▶ Could the OS running under full control of a hypervisor know
it is running under a hypervisor?

26/27 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT



Summary

▶ Malware works within access control but may bypass it via
errors and bugs.

▶ More powerful malwares may be created by combining
malwares strong for different life cycle phases, requiring
defense mechanisms to be more effective.

▶ However, it is human beings that control the computer system
so one should not underestimate the human risk factor even a
very strong defense mechanism is used.

27/27 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT


	Malware
	Stack Overflow
	Blue Pill

