ECE 443/518 – Computer Cyber Security Lecture 21 Access Control I

Professor Jia Wang Department of Electrical and Computer Engineering Illinois Institute of Technology

November 4, 2024

ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

1/29

Access Control

Security Policy

Confidentiality Policies

- ► This lecture: ICS 2,4,5
- Next lecture: ICS 6,7,14

Outline

Access Control

Security Policy

Confidentiality Policies

Access Control

How people could interact securely if secure collaborations are

- not available, e.g. before the invention of public-key cryptography?
- too costly, e.g. for secure multi-party computation?
- Study the relation between
 - Subject: who? active entities like human and processes.
 - Object: what? entities containing information like files.
- Access Control: who can access what?
 - A.k.a. Authorization
- Assume certain protocol/mechanism can be enforced.
 - E.g. ignore authentication assume identities of subjects can be established.

6/29

- A computing system.
 - Or any system that stores and processes information.
- Modeled as a finite state machine: states and transitions.
 - registers+memory locations+secondary storage
- Protection states: only certain bits of system states matter.
 - Depending on how subjects access objects per each state.

- Secure policy: what protection states are secure and what protection states are insecure.
- Secure system: starting from any secure state, one cannot reach any insecure state.

Breach of security if an insecure state is reached.

 <u>Security mechanism</u>: prevents transition from secure to insecure states.

- A framework to describe access control.
- Rows: subjects
- Columns: objects
- ▶ *a*[*s*, *o*]: rights of subject *s* on object *o*.

	file 1	file 2	process 1	process 2
process 1	read, write, own	read	read, write, execute, own	write
process 2	append	read, own	read	read, write, execute, own

Figure 2–1 An access control matrix. The system has two processes and two files. The set of rights is {read, write, execute, append, own}.

(Bishop)

Primitive operations on access control matrix.

- As a basis to reason with transitions.
- As a basis to implement access control matrix.
- 1. create subject s
- 2. create object o
- 3. enter r into a[s, o]
- 4. delete r from a[s, o]
- 5. destroy subject s
- 6. destroy object o

Protection State Transitions Example

CreateFile(p, f)

- p: subject
- f: object (the file to create)
- 1. create object f
- 2. enter own into a[p, f]
- 3. enter read into a[p, f]
- 4. enter write into a[p, f]
- Can any other subject q access f?
 - ▶ Who is allowed to modify *a*[*q*, *f*]?
 - What if we would like every one to read but not write f?
 - What about a new subject?

- Subject: Alice and Bob
- Object: file X
- Secure states: Alice can but Bob cannot access X
- What if Alice copies X into Y and allows Bob to access Y?
 - Obviously you cannot simply forbid Alice to copy X, e.g. Alice could memorize X and at a later time append it to a file Y that Bob has access.

Outline

Access Control

Security Policy

Confidentiality Policies

- Confidentiality: no member of a set X of entities obtain information or resources I.
 - Information flow: someone in X may obtain I indirectly via entities authorized to obtain I.
- Integrity: all members of a set X of entities trust information or resources I.
 - Trust comes from authorization on who and how to modify I.
 - Separation of duties: multiple entities should be involved.
- Availability: all members of a set X of entities can access information or resources I.
- Security policies involve one or more of such properties.

Policy vs. Mechanism

- Security policy: one cannot copy another's homework.
- If A copies B's homework file because B forgot to read protect the homework file, who breaches security?
 - Obviously A breaches security.
 - However, B doesn't since there is no security policy for B to read protect the homework file.
- There is no mentioning of read protection in the security policy.
 - Read protection is a security mechanism: something that can be enforced for a security policy.
- By enforcing file access control as a security mechanism, A can no longer copy B's homework file.

Still, A may find other ways to copy other's homework.

- Security policy: information regarding a particular product is proprietary and is not to leave the control of the company.
- What about backups containing such information on cloud?
- Security mechanism
 - Depend on how cloud controls access to such information in plaintext.
 - Or the company can make use of cryptography.

- A military security policy (also called a governmental security policy) is a security policy developed primarily to provide confidentiality.
- A commercial security policy is a security policy developed primarily to provide integrity.

- To reason with security policies and security mechanisms requires certain assumptions.
- Trust: are these assumptions valid?
- Download and install patch to improve OS security.
 - Patch is authentic.
 - Patch is of good quality.
 - Patch installs correctly.
 - Patch will not interfere with existing configurations.

Discretionary access control (DAC)

- A.k.a. identity-based access control (IBAC).
- An individual user can set an access control mechanism to allow or deny access to an object.
- E.g. you use a password to control who can visit your website.
- Mandatory access control (MAC)
 - Occasionally called a rule-based access control.
 - A system mechanism controls access to an object and an individual user cannot alter that access.
 - E.g. laws may grant access to certain information without owner's permission.

Outline

Access Control

Security Policy

Confidentiality Policies

- A.k.a information flow policy.
 - Unauthorized entities may access information indirectly.
- Prevent the unauthorized disclosure of information.
 - Integrity and availability are not of concern.

- Military-style classifications for confidentiality.
- Goal: prevent read access to information at a security classification higher than personnel's clearance.
 - E.g. to prevent someone to read a secret and then publish it somewhere for anyone to access.
- Combining mandatory access control defined via security classifications, and discretionary access control.

Access Control Details

- Security classification: sensitivity levels of object (information).
 - The higher the levels, the greater the need to keep it confidential.
 - E.g. TOP SECRET (TS) > SECRET (S) > CONFIDENTIAL
 (C) > UNCLASSIFIED (UC)
 - Written as L(O) for object O.
- Security clearance: levels of subject (entities).
 - Same choice of levels as security classification.
 - Written as L(S) for subject S.
- Discretionary access control.
 - A subject S has discretionary read (or write) access to an object O.

Simple Security Condition and Star Property

- Simple Security Condition: S can read O if and only if L(O) ≤ L(S) and S has discretionary read access to O.
- ► *-Property: S can write O if and only if if L(O) ≥ L(S) and S has discretionary write access to O.
- Read down, write up.
 - No reads up, no writes down.
- Basic Security Theorem: the system remains secure if transitions preserve simple security condition and *-property.
 - Information always flows from lower-level objects to higher-level objects.
 - Assume subjects only communicate via objects.

Bell-LaPadula Example

Security clearance and classification

- TS Tamara, Personnel Files
 - S Sally, Electronic Mail Files
 - C Claire, Activity Log Files
- UC Ulaley, Telephone List Files
- Can Claire and Ulaley read Personnel Files?
- Can Tamara read Telephone List Files?
- Can Tamara read Personnel Files to obtain everyone's password and write them into Activity Log Files?

Extension: Categories

- Object may belong to multiple categories.
 - Contain sensitive information regarding all those categories.
 - ▶ Written as *C*(*O*) for object *O*.
- Subject may access multiple categories.
 - "need to know": no subject should be able to read objects unless reading them is necessary.
 - ▶ Written as *C*(*S*) for subject *S*.
- Simple Security Condition: S can read O if and only if L(O) ≤ L(S) and C(O) ⊆ C(S) and S has discretionary read access to O.
- ▶ *-Property: S can write O if and only if if $L(O) \ge L(S)$ and $C(S) \subseteq C(O)$ and S has discretionary write access to O.
- Basic Security Theorem holds similarly.

Bell-LaPadula Example with Categories

Subjects

- ► George: (*SECRET*, {*NUC*, *EUR*})
- Paul: (SECRET, {EUR, US, NUC})

Objects

- DocA: (CONFIDENTIAL, {NUC})
- DocB: (SECRET, {EUR, US})
- DocC: (SECRET, {EUR})
- What can George read?
- What can Paul read?
- What can Paul write?

The Need to Decrease Security Level

- Paul cannot write anything that can be read by George.
 - This is reasonable since Paul knows information US which George cannot know.
 - But this is at least not convenient.
- Current security level: a subject may (effectively) decrease its security level from the maximum in order to communicate with entities at lower security levels.
 - Paul can decrease to (SECRET, {EUR}) to write DocC that George can read.
- Essentially, decreasing security level implies the subject should "forget" any information from higher security levels.
 - Paul need to "forget" anything in (SECRET, {US, NUC}) to reach (SECRET, {EUR}).
 - The challenge is how to enforce such requirement.

- From a system perspective, security policies mostly concern of access control (a.k.a. authorization) – who can do what at when.
 - Security mechanism concerns of how to enforce them.
- The Bell-LaPadula model provides confidentiality but may prevent a personnel with more sensitive knowledge to communicate with a personnel with lower security levels.