ECE 443/518 – Computer Cyber Security Lecture 20 Garbled Circuit

Professor Jia Wang Department of Electrical and Computer Engineering Illinois Institute of Technology

October 30, 2024

1/14 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

Outline

Garbled Circuit

2/14 ECE 443/518 - Computer Cyber Security, Dept. of ECE, IIT

- This lecture: Garbled Circuit
- Next lecture: ICS 2-7,14

Outline

Garbled Circuit

4/14 ECE 443/518 - Computer Cyber Security, Dept. of ECE, IIT

Use 5 bits for each wire.

Wire	Selection Bit	0	1
0	$S_{O} = 1$	$O_0 = 10001 = 17$	$O_1 = 00101 = 5$
Α	$S_A = 0$	$A_0 = 00110 = 6$	$A_1 = 10000 = 16$
В	$S_B = 1$	$B_0 = 10010 = 18$	$B_1 = 00010 = 2$

- Alice cannot send Bob the above table.
- However, for the computation to proceed, Bob need to know A_a and B_b, and then calculate O_f.
- In general, we should assume Bob has no knowledge of a, b and f so that the idea will work for more complex circuits as multiple levels of gates.

S(A)	S(B)	E(O)
$S_A = 0$	$S_B = 1$	$e_{A_0,B_0}(O_1) = 6 + 18 + 5 \mod 32 = 29$
$S_A = 0$	$1 - S_B = 0$	$e_{A_0,B_1}(O_1) = 6 + 2 + 5 \mod 32 = 13$
$1 - S_A = 1$	$S_B = 1$	$e_{A_1,B_0}(O_1) = 16 + 18 + 5 \mod 32 = 7$
$1 - S_A = 1$	$1 - S_B = 0$	$e_{A_1,B_1}(O_0) = 16 + 2 + 17 \mod 32 = 3$

- With the help of an encryption function e(), Alice encrypts every gate truth table.
 - e will take A and B as key and O as the plaintext.
 - Subscripts are the actual boolean values, e.g. for A_0 and B_0 , we should use O_1 because 0 NAND 0 = 1.
 - Let's use $e_{A||B}(O) = A + B + O \mod 32$ for our example.

Evaluating Garbled Circuit

S(A)	S(B)	E(O)
0	1	29
0	0	13
1	1	7
1	0	3

Alice sends the encrypted truth table to Bob.

Hide the binary strings and the selection bits for wires.

• Bob decrypts with this table to obtain O_f from A_a and B_b .

- Using the first bit of A_a and B_b to identify the row for $E(O_f)$.
- Since $e_{A||B}(O) = A + B + O \mod 32$, $O_f = E(O_f) - A_a - B_b \mod 32$

• For example, for $A_a = 16$ and $B_b = 18$,

• $S(A_a) = 1$ and $S(B_b) = 1$, so use the third row $E(O_f) = 7$.

•
$$O_f = 7 - 16 - 18 \mod 32 = 5$$
.

But Bob can learn S_A and S_B from the table and know what A and B represent

Reordering Tables

Alice sorts the rows into S(A)S(B) = 00, 01, 10, 11.

S(A)	S(B)	E(O)
0	0	13
0	1	29
1	0	3
1	1	7

• Consider $A_a = 16$ and $B_b = 18$ again,

- Bob still has $S(A_a) = 1$ and $S(B_b) = 1$
- Now it is the fourth row $E(O_f) = 7$.
- Bob still computes $O_f = 7 16 18 \mod 32 = 5$.
- Though Bob has no idea what a, b and f are.

Input and Output

For input wires,

- Alice sends Bob A_a.
- Alice uses OT to send Bob B_b.
 - Obviously Bob doesn't want Alice to know b.
- Once Bob calculates O_f , Alice tells what is f.
- Alice has no need to send Bob A_{1-a} .
- Could Alice also send Bob B_{1-b} to avoid using OT?
 - Alice cannot send Bob B_{1-b} .
 - Otherwise Bob can compute $O_{f'}$ from A_a and B_{1-b} and then $a = O_{f'} \oplus O_f$ since f' = NAND(a, 1 b).
 - In other words, Alice should prevent Bob to evaluate the garbled circuit multiple times using different secrets from Bob.

What about more complicated circuits?

- E.g. f = NAND(NAND(a, b), NAND(c, d)) where Alice provides a and c while Bob provides b and d.
- Identify wires and gates before encrypting them.

- Gate 1: X = NAND(A, B)
- Gate 2: Y = NAND(C, D)
- Gate 3: Z = NAND(X, Y)

Wire	Selection Bit	0	1	
A	$S_A = 0$	$A_0 = 00110 = 6$	$A_1 = 10000 = 16$	
В	$S_B = 1$	$B_0 = 10010 = 18$	$B_1 = 00010 = 2$	
C	$S_{C} = 1$	$C_0 = 10100 = 20$	$C_1 = 00001 = 1$	
D	$S_D = 1$	$D_0 = 11001 = 25$	$D_1 = 00111 = 7$	
X	$S_X = 0$	$X_0 = 00111 = 7$	$X_1 = 11111 = 31$	
Y	$S_Y = 0$	$Y_0 = 00000 = 0$	$Y_1 = 10101 = 21$	
Ζ	$S_Z = 1$	$Z_0 = 10001 = 17$	$Z_1 = 00101 = 5$	

The Garbler Alice: Encrypting Truth Tables

Gate 1				
S(A) S(B) E(X)				
$S_A = 0$	$S_B = 1$	$e_{A_0,B_0}(X_1) = 6 + 18 + 31 \mod 32 = 23$		
$S_A = 0$	$1 - S_B = 0$	$e_{A_0,B_1}(X_1) = 6 + 2 + 31 \mod 32 = 7$		
$1-S_A=1$	$S_B = 1$	$e_{A_1,B_0}(X_1) = 16 + 18 + 31 \mod 32 = 1$		
$1-S_A=1$	$1-S_B=0$	$e_{A_1,B_1}(X_0) = 16 + 2 + 7 \mod 32 = 25$		
		Gate 2		
S(C)	S(D)	E(Y)		
$S_C = 1$	$S_D = 1$	$e_{C_0,D_0}(Y_1) = 20 + 25 + 21 \mod 32 = 2$		
$S_C = 1$	$1 - S_D = 0$	$e_{C_0,D_1}(Y_1) = 20 + 7 + 21 \mod 32 = 16$		
$1 - S_C = 0$	$S_D = 1$	$e_{C_1,D_0}(Y_1) = 1 + 25 + 21 \mod 32 = 15$		
$1 - S_C = 0$	$1 - S_D = 0$	$e_{C_1,D_1}(Y_0) = 1 + 7 + 0 \mod 32 = 8$		
	Gate 3			
S(X)	S(Y)	E(Z)		
$S_X = 0$	$S_Y = 0$	$e_{X_0,Y_0}(Z_1) = 7 + 0 + 5 \mod 32 = 12$		
$S_X = 0$	$1 - S_Y = 1$	$e_{X_0,Y_1}(Z_1) = 7 + 21 + 5 \mod 32 = 1$		
$1 - S_X = 1$	$S_Y = 0$	$e_{X_1,Y_0}(Z_1) = 31 + 0 + 5 \mod 32 = 4$		
$1 - S_X = 1 1 - S_Y = 1 e_{X_1, Y_1}(Z_0) = 31 + 21 + 17 \mod 32 = 5$				

ECE 443/518 - Computer Cyber Security, Dept. of ECE, IIT

12/14

The Evaluator Bob

ſ	Gate 1		Gate 2		Gate 3	
ĺ	S(A) S(B)	E(X)	S(C) S(D)	E(Y)	S(X) S(Y)	E(Z)
ĺ	0 0	7	0 0	8	0 0	12
	01	23	0 1	15	0 1	1
	1 0	25	1 0	16	1 0	4
	11	1	11	2	11	5

The garbled circuit sent by Alice

• Alice sends her inputs: $A_a = 16$, $C_c = 20$

- Alice sends Bob's inputs via OT: $B_1 = 2$, $D_1 = 7$
- Bob's calculation

$$X_x = 25 - 16 - 2 \mod 32 = 7$$

$$Y_y = 16 - 20 - 7 \mod 32 = 21$$

$$Z_z = 1 - 7 - 21 \mod 32 = 5$$

After Bob shares $Z_z = 5$ with Alice, both party learn the result f = 1.

- The mechanism works with arbitrary number of NAND gates, and thus any combinational circuits.
 - Bob can evalute each gate following the topological ordering, without knowing what each gate inputs and gate output mean.
- Overall, there is constant amount of computation and communication per each NAND gate.
 - Efficient in theory.
- ► A lot of ongoing research to improve its practical performance
 - The mechanism works with arbitrary gates and some gates lile XOR and NOT can be implemented much more easily.