ECE 443/518 – Computer Cyber Security Lecture 19 Secure Multi-Party Computation

Professor Jia Wang Department of Electrical and Computer Engineering Illinois Institute of Technology

October 28, 2024

Secure Multi-Party Computation

Garbled Circuit

- This lecture: Secure Multi-Party Computation
- Next lecture: Garbled Circuit

Secure Multi-Party Computation

Garbled Circuit

- Alice runs a pay-per-view service that provides access to n messages m₁, m₂,..., m_n.
- Bob would like to access a particular message m_k .
- Bob don't want to let Alice know what is k.
 - For privacy reasons.
- Bob don't want to pay Alice a lot of money to obtain all the messages in order to hide k.
- Let's consider the simple case for two messages (n = 2).
 - Alice's secret: m_1, m_2 .
 - Bob's secret: $k \in \{1, 2\}$.
 - At the end, Bob learns m_k but not the other among the two messages, and Alice learns nothing about k.
- How could this even be possible?
 - Assume Alice and Bob are honest but curious.

Mechanism Design

6/21

- Alice's RSA key pair: $k_{pr} = (n = pq, d), k_{pub} = (n, e).$
- 1. Alice sends Bob two random messages x_1 and x_2 .
- 2. Bob generates a random message y and sends Alice v.

•
$$v = (y^e + x_k) \mod n$$
.

3. Alice sends Bob m'_1 and m'_2 .

•
$$m'_1 = m_1 + ((v - x_1)^d \mod n).$$

• $m'_2 = m_2 + ((v - x_2)^d \mod n).$

4. Bob computes $m'_k - y$ to recover m_k .

So Bob indeed learns m_k.

The only piece of information Alice directly learns from Bob is the message v.

 $\triangleright v = (y^e + x_k) \mod n.$

Note that Alice has no kwowledge about y and k.

• With x_1 and x_2 , Alice may derive y_1 and y_2 .

$$y_1 = (v - x_1)^d \mod n.$$

>
$$y_2 = (v - x_2)^d \mod n$$
.

$$\blacktriangleright v \equiv y_1^e + x_1 \equiv y_2^e + x_2 \pmod{n}.$$

Alice cannot decide which of y_1 and y_2 is y.

Alice learns nothing about Bob's secret k.

No matter how powerful Alice is.

Analysis for Bob

- Assume k = 1 for Bob.
 - Bob will learn m₁.
 - Does Bob learn anything about m₂?
- **b** Bob learns x_1, x_2, m'_1, m'_2 directly from Alice.
 - x₁ and x₂ are simply random messages, providing no information on m₂.
 - $m'_1 = m_1 + y$, having nothing to do with m_2 .
- $m'_2 \equiv m_2 + (v x_2)^d \equiv m_2 + (y^e + x_1 x_2)^d \pmod{n}$.
 - Bob may learn m_2 if and only if he can decrypt the ciphertext $y^e + x_1 x_2$ encrypted with Alice's public key.
 - Since Alice chooses x₁ and x₂, to decrypt y^e + x₁ x₂ implies Bob could decrypt any message encrypted with Alice's public key – this breaks RSA.
- Bob, if computationally bounded, learns nothing about *m*₂.

Secure Multi-Party Computation

Garbled Circuit

- ▶ Assume there are *n* honest-but-curious parties 1, 2, ..., *n*.
- Each party k possesses a secret value v_k .
- Together they compute $f = F(v_1, v_2, \ldots, v_n)$.

For a well-known function F.

- Confidentiality: secret remains secret.
 - Any party k should only learn f from the computation, but nothing more about secrets of other parties.
- Ignore integrity issues.

- Secret from every party: 0 or 1
- F computes the summation.
- Every party learns only *f*, the number of 1's.
- A party may learn exactly what other parties vote, e.g.
 - When there is only two parties, both know.
 - When f = 0 or n, everyone knows.
 - When f = 1 or n 1, whose votes 1 or 0 knows.

- Secret from every party: a number representing salary.
- ► *F* computes the maximum.
- Every party learns only *f*, the highest salary.
- If there are only two parties Alice and Bob,
 - Alice, if earns more, won't learn Bob's salary.
 - What if Alice run the salary comparison multiple times, each with a different number? Then she may know Bob's salary!
- Mechanism for secure multi-party computation should prevent evaluating F multiple times without consent from all parties.
 - A party is not able to change its secret when evaluating *F*.

Secure Multi-Party Computation

Garbled Circuit

- Let's consider two parties for simplicity.
- How could you represent arbitrary computations?

- Encode secrets from Alice and Bob, as well as the result f from the computation, all as binary strings.
- F then becomes a boolean function.
 - Implemented as a boolean circuit.
- In particular, a combinational circuit.
 - ▶ Whose size is proportional to the effort to compute *F*.
 - We will not distinguish F from its combinational circuit implementation.

Example: NAND

- Secret from Alice: $a \in \{0, 1\}$
- Secret from Bob: $b \in \{0, 1\}$
- Can they compute f = NAND(a, b) without revealing their own secrets?
 - If we could further extend this to any input bits and any number of NAND gates, then we could handle arbitrary combinational circuits.
- Note that for f = NAND(a, b), if Bob chooses b = 1 then he can learn a from f.
 - This is allowed per definition of secure multi-party computation.
 - Not a concern if Bob chooses b = 0, or the circuit is much more complicated.

Idea of Garbled Circuit

- A collaboration between Alice and Bob.
- ► The garbler Alice garbles the circuit.
 - By encrypting every wire and every gate.
 - Send Bob the garbled circuit.
 - Send Bob her input bits (encrypted).
- Alice also helps Bob to encrypt his input bits.
 - So Bob is not able to change them and evaluate the circuit multiple times in order to learn Alice's input bits.
 - But what prevents Alice to learn Bob's input bits? How could Alice encrypts bits without knowing it?
- Then the evaluator Bob evalutes the garbled circuit.
 - Compute with encrypted boolean values.
- Finally Bob communicate with Alice to reveal the output bits.

Encrypting Wires

- For any wire W, Alice generates a random selection bit S_w .
- Then, Alice generates two random binary strings W_0 and W_1 .
 - W_0 represents signal 0 and starts with S_w .
 - W_1 represents signal 1 and starts with $1 S_w$.
- Alice can tell what signal a binary string represents by inspecting its first bit.

Wire	Selection Bit	0	1
0	S _O	$O_0 = S_O \cdots$	$O_1 = (1 - S_O) \cdots$
Α	S _A	$A_0 = S_A \cdots$	$A_1 = (1 - S_A) \cdots$
В	S _B	$B_0 = S_B \cdots$	$B_1 = (1 - S_B) \cdots$

Encrypting Wires (Cont.)

_	

For example, let's use 5 bits for each wire.

Wire	Selection Bit	0	1
0	$S_{O} = 1$	$O_0 = 10001 = 17$	$O_1 = 00101 = 5$
Α	$S_A = 0$	$A_0 = 00110 = 6$	$A_1 = 10000 = 16$
В	$S_B = 1$	$B_0 = 10010 = 18$	$B_1 = 00010 = 2$

- Otherwise Bob can evaluate the circuit multiple times with different signals to learn Alice's input bits.
- Bob need to calculate O_f from A_a and B_b .

Discussions

Wire	Selection Bit	0	1
0	$S_{O} = 1$	$O_0 = 10001 = 17$	$O_1 = 00101 = 5$
A	$S_A = 0$	$A_0 = 00110 = 6$	$A_1 = 10000 = 16$
В	$S_B = 1$	$B_0 = 10010 = 18$	$B_1 = 00010 = 2$

When completed, Bob sees about half of the table.

- Bob learns one binary string per wire, e.g A_a , B_b , and O_f .
- But Bob should not be able to learn the selection bits except for his input and the final output.
- Alice should prevent Bob to guess other binary strings and selection bits in the table correctly.
 - With *m* bits, Bob has a chance of ¹/_{2^m} to guess both the binary string and the selection bit correctly for each wire.
 - A very small chance even for a single wire if *m* is large enough.
 - Work on Homework 3 to see cases when Bob cannot guess them no matter what using an argument similar to OTP.
- How could Bob calculate O_f from A_a and B_b ?
 - For NAND in our example or more generally other gates.

- Oblivious transfer (OT) as a building block for more complicated protocols.
- Secure two-party computation via garbled circuit.