ECE 443/518 – Computer Cyber Security Lecture 19 Secure Multi-Party Computation

Professor Jia Wang Department of Electrical and Computer Engineering Illinois Institute of Technology

October 28, 2024

[Secure Multi-Party Computation](#page-8-0)

[Garbled Circuit](#page-12-0)

- ▶ This lecture: Secure Multi-Party Computation
- ▶ Next lecture: Garbled Circuit

[Secure Multi-Party Computation](#page-8-0)

[Garbled Circuit](#page-12-0)

- \blacktriangleright Alice runs a pay-per-view service that provides access to n messages m_1, m_2, \ldots, m_n .
- \blacktriangleright Bob would like to access a particular message m_k .
- \triangleright Bob don't want to let Alice know what is k.
	- ▶ For privacy reasons.
- ▶ Bob don't want to pay Alice a lot of money to obtain all the messages in order to hide k.
- \blacktriangleright Let's consider the simple case for two messages $(n = 2)$.
	- Alice's secret: m_1, m_2 .
	- ▶ Bob's secret: $k \in \{1, 2\}$.
	- At the end, Bob learns m_k but not the other among the two messages, and Alice learns nothing about k .
- \blacktriangleright How could this even be possible?
	- ▶ Assume Alice and Bob are honest but curious.

Mechanism Design

- Alice's RSA key pair: $k_{pr} = (n = pq, d)$, $k_{pub} = (n, e)$.
- 1. Alice sends Bob two random messages x_1 and x_2 .
- 2. Bob generates a random message v and sends Alice v .

$$
\blacktriangleright v = (y^e + x_k) \bmod n.
$$

3. Alice sends Bob m'_1 and m'_2 .

$$
m'_1 = m_1 + ((v - x_1)^d \mod n).
$$

\n
$$
m'_2 = m_2 + ((v - x_2)^d \mod n).
$$

4. Bob computes $m'_k - y$ to recover m_k .

For
$$
k = 1
$$
, RSA guarantees that
\n $m'_1 = m_1 + ((v - x_1)^d \mod n) = m_1 + (y^{ed} \mod n) = m_1 + y$.
\n**Same applies when** $k = 2$.

So Bob indeed learns m_k .

▶ The only piece of information Alice directly learns from Bob is the message v .

 \blacktriangleright $v = (y^e + x_k) \text{ mod } n.$

 \triangleright Note that Alice has no kwowledge about y and k.

 \triangleright With x_1 and x_2 . Alice may derive y_1 and y_2 .

$$
y_1 = (v - x_1)^d \mod n.
$$

$$
y_2 = (v - x_2)^d \mod n.
$$

$$
\blacktriangleright v \equiv y_1^e + x_1 \equiv y_2^e + x_2 \pmod{n}.
$$

 \blacktriangleright Alice cannot decide which of y_1 and y_2 is y.

- \blacktriangleright Alice learns nothing about Bob's secret k .
	- ▶ No matter how powerful Alice is.

Analysis for Bob

- \blacktriangleright Assume $k = 1$ for Bob.
	- \blacktriangleright Bob will learn m_1 .
	- \blacktriangleright Does Bob learn anything about m_2 ?
- ▶ Bob learns x_1, x_2, m'_1, m'_2 directly from Alice.
	- \triangleright x_1 and x_2 are simply random messages, providing no information on m_2 .
	- \blacktriangleright $m'_1 = m_1 + y$, having nothing to do with m_2 .
- ▶ $m'_2 \equiv m_2 + (v x_2)^d \equiv m_2 + (y^e + x_1 x_2)^d$ (mod *n*).
	- \triangleright Bob may learn m_2 if and only if he can decrypt the ciphertext $y^e + x_1 - x_2$ encrypted with Alice's public key.
	- ▶ Since Alice chooses x_1 and x_2 , to decrypt $y^e + x_1 x_2$ implies Bob could decrypt any message encrypted with Alice's public key – this breaks RSA.
- \blacktriangleright Bob, if computationally bounded, learns nothing about m_2 .

[Secure Multi-Party Computation](#page-8-0)

[Garbled Circuit](#page-12-0)

- Assume there are n honest-but-curious parties $1, 2, \ldots, n$.
- Each party k possesses a secret value v_k .
- \blacktriangleright Together they compute $f = F(v_1, v_2, \ldots, v_n)$.

 \blacktriangleright For a well-known function F .

- ▶ Confidentiality: secret remains secret.
	- \blacktriangleright Any party k should only learn f from the computation, but nothing more about secrets of other parties.
- ▶ Ignore integrity issues.
- ▶ Secret from every party: 0 or 1
- \blacktriangleright F computes the summation.
- \blacktriangleright Every party learns only f, the number of 1's.
- \triangleright A party may learn exactly what other parties vote, e.g.
	- \blacktriangleright When there is only two parties, both know.
	- \blacktriangleright When $f = 0$ or *n*, everyone knows.
	- ▶ When $f = 1$ or $n 1$, whose votes 1 or 0 knows.
- ▶ Secret from every party: a number representing salary.
- \blacktriangleright F computes the maximum.
- \blacktriangleright Every party learns only f, the highest salary.
- \blacktriangleright If there are only two parties Alice and Bob,
	- ▶ Alice, if earns more, won't learn Bob's salary.
	- \triangleright What if Alice run the salary comparison multiple times, each with a different number? Then she may know Bob's salary!
- ▶ Mechanism for secure multi-party computation should prevent evaluating F multiple times without consent from all parties.
	- \triangleright A party is not able to change its secret when evaluating F .

[Secure Multi-Party Computation](#page-8-0)

[Garbled Circuit](#page-12-0)

- ▶ Let's consider two parties for simplicity.
- ▶ How could you represent arbitrary computations?

- \blacktriangleright Encode secrets from Alice and Bob, as well as the result f from the computation, all as binary strings.
- \blacktriangleright F then becomes a boolean function.
	- ▶ Implemented as a boolean circuit.
- ▶ In particular, a combinational circuit.
	- \triangleright Whose size is proportional to the effort to compute F.
	- \triangleright We will not distinguish F from its combinational circuit implementation.

Example: NAND

- ▶ Secret from Alice: $a \in \{0, 1\}$
- ▶ Secret from Bob: $b \in \{0, 1\}$
- \triangleright Can they compute $f = \text{NAND}(a, b)$ without revealing their own secrets?
	- ▶ If we could further extend this to any input bits and any number of NAND gates, then we could handle arbitrary combinational circuits.
- ▶ Note that for $f = \text{NAND}(a, b)$, if Bob chooses $b = 1$ then he can learn a from f .
	- \blacktriangleright This is allowed per definition of secure multi-party computation.
	- \triangleright Not a concern if Bob chooses $b = 0$, or the circuit is much more complicated.

Idea of Garbled Circuit

- ▶ A collaboration between Alice and Bob.
- \blacktriangleright The garbler Alice garbles the circuit.
	- \triangleright By encrypting every wire and every gate.
	- ▶ Send Bob the garbled circuit.
	- ▶ Send Bob her input bits (encrypted).
- \blacktriangleright Alice also helps Bob to encrypt his input bits.
	- ▶ So Bob is not able to change them and evaluate the circuit multiple times in order to learn Alice's input bits.
	- ▶ But what prevents Alice to learn Bob's input bits? How could Alice encrypts bits without knowing it?
- \blacktriangleright Then the evaluator Bob evalutes the garbled circuit.
	- \triangleright Compute with encrypted boolean values.
- ▶ Finally Bob communicate with Alice to reveal the output bits.

Encrypting Wires

- \blacktriangleright For any wire W, Alice generates a random selection bit S_w .
- \blacktriangleright Then, Alice generates two random binary strings W_0 and W_1 .
	- \triangleright W_0 represents signal 0 and starts with S_w .
	- ▶ W₁ represents signal 1 and starts with $1 S_w$.
- ▶ Alice can tell what signal a binary string represents by inspecting its first bit.

 \triangleright For the circuit $Q = NAND(A, B)$, there are three wires.

Encrypting Wires (Cont.)

For example, let's use 5 bits for each wire.

- ▶ Otherwise Bob can evaluate the circuit multiple times with different signals to learn Alice's input bits.
- Bob need to calculate O_f from A_a and B_b .

Discussions

▶ When completed, Bob sees about half of the table.

- Bob learns one binary string per wire, e.g A_a , B_b , and O_f .
- ▶ But Bob should not be able to learn the selection bits except for his input and the final output.
- ▶ Alice should prevent Bob to guess other binary strings and selection bits in the table correctly.
	- ▶ With *m* bits, Bob has a chance of $\frac{1}{2^m}$ to guess both the binary string and the selection bit correctly for each wire.
	- \triangleright A very small chance even for a single wire if m is large enough.
	- ▶ Work on Homework 3 to see cases when Bob cannot guess them no matter what using an argument similar to OTP.

 \blacktriangleright How could Bob calculate O_f from A_a and B_b ?

▶ For NAND in our example or more generally other gates.

- ▶ Oblivious transfer (OT) as a building block for more complicated protocols.
- ▶ Secure two-party computation via garbled circuit.