ECE 443/518 – Computer Cyber Security Lecture 11 Digital Signatures and Authentication

Professor Jia Wang Department of Electrical and Computer Engineering Illinois Institute of Technology

September 25, 2024

Outline

[Digital Signatures](#page-4-0)

[Authentication](#page-14-0)

\blacktriangleright This lecture: UC 10.1 – 10.3

▶ Next lecture: UC 13

Midterm Exam

- ▶ Lecture $1 \sim$ Lecture 13, see Homework 1 and 2 for sample.
	- ▶ Points may be deducted if key steps are missing.
- \triangleright Students registered for main campus section: Wed. 10/9, 11:25 AM – 12:40 PM, in class.
	- ▶ A physical calculator is allowed. Laptop or any other electronic device or calculator apps running on them are not allowed.
	- \triangleright Closed book/notes. A letter-size page of cheat sheet is allowed.
- ▶ Online students may take the exam as above, or contact Charles Scott (scott@iit.edu) to make arrangement and confirm with me.

▶ No make-up exam will be offered if you fail to do so.

- ▶ ADA Accommodations: contact Center for Disability Resource (disabilities@iit.edu)
- \blacktriangleright Emergency/extraordinary reasons for make-up midterm exams are accepted only with documented proof like docter's notes.

Outline

[Digital Signatures](#page-4-0)

[Authentication](#page-14-0)

Security Services

- \blacktriangleright The services we are familiar with
	- \blacktriangleright Confidentiality
	- ▶ Integrity and message authentication
- ▶ Nonrepudiation: sender can not deny creation of message.
	- ▶ But who is the sender?
- ▶ Authentication: who are you?
	- \blacktriangleright A.k.a. entity/user authentication, or identification
	- \triangleright Within the context of computer cyber security, shall be built on top of a nonrepudiation service (but usually is not!).
- ▶ Services enabled by authentication
	- \triangleright Access control/authorization: decide who can do what.
	- ▶ Auditing: provide a proof of who did what.
- \blacktriangleright Anonymity/privacy: what if we don't want to be identified?
	- \blacktriangleright E.g. to guard against potential misuse of identity.
	- ▶ Can we authenticate an amonynous user?

Principle of Digital Signatures

(Paar and Pelzl)

- ▶ Nonrepudiation: no shared secret
	- Bob signs with his private key k_{pr} .
	- \blacktriangleright Alice verifies with Bob's public key k_{pub} .

 \triangleright Sign the hash if the message is too long.

RSA Digital Signature

(page 265, Paar and Pelzl)

▶ RSA digital signature works as inversed RSA encryption!

- \triangleright sig() is d(), ver() is essentially e().
- \blacktriangleright Time complexity is the same as RSA encryption.

Example

- \blacktriangleright $k_{pub} = (n = 221, e = 5), k_{pr} = (p = 13, q = 17, d = 77)$ $\times x = 35$
- \blacktriangleright Bob computes the signature: $s = x^d \mod n = 35^{77} \mod 221 = 120.$
- \blacktriangleright Alice verifies the signature: $x' = s^e \mod n = 120^5 \mod 221 = 35.$
	- ▶ So $x == x'$ and x is indeed generated by Bob.
- ▶ What prevent Oscar to forge Bob's signature?
- \blacktriangleright To forge a signature s for x, Oscar need to
	- Either compute d and then $s = x^d$ mod n.
	- ▶ Or solve $s^e \equiv x \pmod{n}$
- ▶ Both are equivalent to break RSA.

Elgamal Digital Signature

▶ Setup Bob's key pair as in DHKE and Elgamal

A well-known large prime p and an integer α .

$$
k_{pr} = d \in \{2, 3, ..., p-2\}
$$

$$
k_{pub} = \beta = \alpha^d \text{ mod } p
$$

▶ To sign a message $x \in \{0, 1, 2, \ldots, p-1\}$ with (r, s) ,

▶ Choose a random ephemeral key $k_F \in \{0, 1, \ldots, p-1\}$ such that $gcd(k_F, p - 1) = 1$.

$$
\bullet \quad \text{Compute } r = \alpha^{k_E} \text{ mod } p
$$

Solve
$$
k_E s \equiv x - dr \pmod{p-1}
$$
 for s

 \blacktriangleright To validate the signature (r, s) for the message x,

$$
\blacktriangleright \text{ Compute } t = \beta^r r^s \text{ mod } p
$$

▶ Apply Fermat's Little Theorem, $r^s \equiv \alpha^{k \in s} \equiv \alpha^{x-dr} \pmod{p}$

▶ So
$$
t \equiv \beta^r r^s \equiv \alpha^{dr} \alpha^{x-dr} \equiv \alpha^x \pmod{p}
$$
 should hold.

 \blacktriangleright To forge a signature (r, s) for x, Oscar need to solve

$$
\alpha^x \equiv \beta^r r^s \pmod{p}
$$

▶ Oscar could first choose any k_E and $r = \alpha^{k_E}$ mod p , then

- ▶ Either solve $r^s \equiv z \pmod{p}$ directly with some z
- \triangleright Or find d first and then solve for s as the signature process.

▶ Both are equivalent to break DHKE.

- ▶ For both RSA and Elgamal digital signature, padding is needed to prevent other attacks.
- ▶ Elgamal digital signature is rarely used in practice. Instead, a variant named DSA and an ECC generalization named ECDSA are widely used

▶ Digital signatures provide stronger guarantees (nonrepudiation) than MAC (message authentication), and thus can replace MAC.

▶ Assume no man-in-the-middle attack.

▶ Practically, MAC is more efficient.

- ▶ MAC is almost as efficient as hash at both sides.
- ▶ Digital signature need to compute exponentials at both sides in addition to hash.
- ▶ Use MAC if nonrepudiation is not required.
- ▶ While we prefer to apply MAC to ciphertext for authenticated encryption, digital signatures are almost always applied to plaintexts if the messages need to be encrypted.

Outline

[Digital Signatures](#page-4-0)

[Authentication](#page-14-0)

Digital Signatures Revisited

Fig. 10.1 Principle of digital signatures which involves signing and verifying a message (Paar and Pelzl)

▶ What should be sent over an authentic channel?

 \blacktriangleright k_{pub} , if Alice need a proof that k_{pub} is indeed Bob's public key.

- \triangleright What if k_{pub} is sent over an insecure channel?
	- Nonrepudiation still works in some sense: Alice can confirm that x is created by someone who owns k_{pr} .

Public Key and Identity

- ▶ Authentication: Bob need to decide if Alice is Alice.
	- \blacktriangleright For recurring activities.
	- ▶ Two steps: Alice first leaves Bob some information for her identity, and then everytime Bob uses such information to verify that Alice is Alice.
- \blacktriangleright Public key is identity.
	- ▶ Without an authentic channel: Bob receives a public key and names it Alice.
	- \blacktriangleright "Anonymous": this identity associates to no real-world entity.
- ▶ Public key as a representation of identity.
	- ▶ With an authentic channel: Alice need to prove she is Alice to Bob, e.g. via a passport, before she can provide a public key for Bob to store.
	- ▶ The public key could be revoked, e.g. when Alice lost her private key.
- \triangleright Which one is better? Depending on the application.

Authetication with Digital Signatures

- ▶ With Alice's public key on file, Bob authenticates by asking whoever claims to be Alice to sign a message with Alice's private key.
- ▶ This seems to be very secure.
	- ▶ Assume Alice keeps her private key as a secret, and Bob stores Alice's public key in a way no one can modify it.
	- ▶ Oscar cannot forge digital signatures.
	- ▶ Even if Oscar steals Alice's public key from Bob, he/she cannot use it to prove he/she is Alice to another party.
- ▶ Replay attack: but Oscar may record the message with Alice's signature and replay it to Bob at a later time.
	- ▶ Bob need to ask Alice to sign a chosen message!
- ▶ Challenge-response authentication.
	- ▶ Challenge: Bob generates a nonce and sends it to Alice.
	- ▶ Response: Alice signs the nonce and replies to Bob.
	- \blacktriangleright Any possibility of man-in-the-middle attack?
- ▶ In many cases Alice also need to be sure that Bob is Bob.
- ▶ Alice may authenticate Bob by Bob's public key.
	- ▶ Same as how Bob setups Alice's public key.
- \blacktriangleright Complications
	- ▶ The two channels Alice-to-Bob and Bob-to-Alice could be different.
		- ▶ Both are authentic.
		- \blacktriangleright Both are not authentic.
		- \triangleright One is authetic and the other is not authentic.
	- \blacktriangleright The need for confidentiality.

Practical Applications and Considerations

- ▶ Common people used to have limited access to public-key cryptography.
	- \triangleright Due to sophiscated/costly hardware/software, patents, business practices etc.
- \triangleright Servers usually identify themselves via digital signatures.
	- ▶ Mostly via HTTPS.
	- ▶ Still, people with little knowledge about cyber security and digital signatures are subject to phishing scams.
- \blacktriangleright For professionals nowadays, adoption of Linux makes authentication with digital signatures widely available.
	- ▶ Mostly via SSH, e.g. GitHub.
	- ▶ Sometimes even enforced, e.g. AWS EC2.

\blacktriangleright RSA digital signature

- ▶ Key generation: by Bob, $k_{pub} = (n, e)$, $k_{pr} = (p, q, d)$
- Sign: Bob only, $s = d_{k_{pr}}(x) = x^d \mod pq$.
- ▶ Verify: everyone, $x' = e_{k_{pub}}(s) = s^e \mod n$, $x = x'^{2}$
- \triangleright Assumption: Oscar cannot factorize *n* into *p* and *q* in polynomial time.
- ▶ Other digital signature algorithms like DSA and ECDSA.
- \blacktriangleright Identification/authentication: solutions exist, but need to make trade-offs.