ECE 443/518 – Computer Cyber Security Lecture 08 Euclidean Algorithm, Fermat's Little Theorem

Professor Jia Wang Department of Electrical and Computer Engineering Illinois Institute of Technology

September 16, 2024

ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

1/20

Outline

Euclidean Algorithm

Fermat's Little Theorem

- ► This lecture: UC 6.3
- Next lecture: UC 6, 7, except 7.6

Outline

Euclidean Algorithm

Fermat's Little Theorem

Euclidean Algorithm

Input: two integers $a \ge b > 0$ 1 $r_0 = a, r_1 = b, i = 1$ 2 **Do**: 3 i = i + 14 $r_i = r_{i-2} \mod r_{i-1}$ 5 **While** $r_i \ne 0$ Output: $gcd(a, b) = r_{i-1}$

• Example: $r_0 = 27, r_1 = 21, r_2 = 6, r_3 = 3, r_4 = 0$

In practice, there is no need to keep each r_k – we use them just for ease of presentation.

For a proof of correctness

Is this algorithm better than the simple one?

ECE 443/518 - Computer Cyber Security, Dept. of ECE, IIT

5/20

Time Complexity of Euclidean Algorithm

• Let
$$q_{k-1} = \lfloor \frac{r_{k-2}}{r_{k-1}} \rfloor$$
. Since $r_{k-2} \ge r_{k-1}$, $q_{k-1} \ge 1$. So,

 $r_{k-2} = q_{k-1}r_{k-1} + r_k \ge r_{k-1} + r_k \ge 2r_k, \forall k = 2, 3, \dots, i.$

For i being odd, we have,

$$a = r_0 \ge 2r_2 \ge 2^2 r_4 \ge \cdots \ge 2^{\frac{i-1}{2}} r_{i-1} \ge 2^{\frac{i-1}{2}}.$$

Similar for i being even.

The loop iterates O(log a) = O(N) rounds.

• Overall the time complexity is $O(N^3)$.

- GCD can be computed efficiently in polynomial time.
 - What is the complexity to obtain any divisor of a that is not 1 or a? Or to prove that a is a prime number?

Extended Euclidean Algorithm (EEA)

- Same time complexity as Euclidean Algorithm: $O(N^3)$
 - Same rounds of iterations. Additional calculations do not increase complexity.
- Anything special?

Extended Euclidean Algorithm (EEA Cont.)

Solve Modular Algebra Equations

 $\blacktriangleright ax \equiv b \pmod{m}$

9/20

- Assume gcd(a, m) = 1.
- Apply EEA to find s and t such that as + mt = 1.
- Solution: $x \equiv bs \pmod{m}$
- Check: $ax \equiv abs \equiv b(1 mt) \equiv b bmt \equiv b \pmod{m}$.

• Time complexity is $O(N^3)$, dominated by EEA.

Examples 1

Solve $5x \equiv 1 \pmod{192}$.

Solve System of Modular Algebra Equations

Examples 2

Outline

Euclidean Algorithm

Fermat's Little Theorem

What about modular n-th root?

 $x^n \equiv a \pmod{m}$.

Obviously you can solve it via brute-force in O(2^N) time for a N-bit m. However, this is not what we are interested into.

• Consider the case when m = p is a prime number first.

Fermat's Little Theorem

Consider an integer x that is not a multiple of p. What does the sequence kx mod p look like for $k = 1, 2, \ldots, p - 1?$ A permutation of $1, 2, \ldots, p-1$ since • These p-1 remainders are all within $1, 2, \ldots, p-1$. They are all different since p is prime. So $x \cdot (2x) \cdots ((p-1)x) \equiv 1 \cdot 2 \cdots (p-1) \pmod{p}$. ln other words, $(p-1)!x^{p-1} \equiv (p-1)! \pmod{p}$. • So $x^{p-1} \equiv 1 \pmod{p}$ since gcd((p-1)!, p) = 1. Fermat's Little Theorem: $x^p \equiv x \pmod{p}$ Also include the case $x \equiv 0 \pmod{p}$. • Example: $2^{13} \equiv 2 \pmod{13}$, $3^{13} \equiv 3 \pmod{13}$.

Solve Modular *n*-th Root for Prime *p*

Solve $x^5 \equiv 2 \pmod{13}$. ▶ $x^{10} \equiv 4 \pmod{13}$, $x^{15} \equiv 8 \pmod{13}$, $x^{25} \equiv 6 \pmod{13}$. Fermat's Little Theorem: $x^{13} \equiv x \pmod{13}$ • So $x^{25} \equiv x^{13}x^{12} \equiv xx^{12} \equiv x \pmod{13}$. Solution: $x \equiv 6 \pmod{13}$ • How about $x^n \equiv a \pmod{p}$? Assume gcd(n, p-1) = 1. No, you can't use this method if n = 2. Solve $ny \equiv 1 \pmod{p-1}$ for y (via EEA). Solution: $x \equiv a^y \pmod{p}$, or practically $x = a^y \mod p$. • Check: $x^n \equiv a^{ny} \equiv a^{(ny) \mod (p-1)} \equiv a \pmod{p}$. Time complexity EEA takes $O(N^3)$ time. a^y mod p can be completed in O(N³) time. (How?) • Overall $O(N^3)$ time again!

Square-and-Multiply

Compute 10¹³ mod 17

$$\blacktriangleright \ 10^{13} \equiv 10^8 \cdot 10^4 \cdot 10^1 \pmod{17}$$

▶ Since 13 = (1101)₂

• Use square to calculate $10^2 \mod 7$, $10^4 \mod 7$, etc.

•
$$10^2 \equiv 100 \equiv 15 \pmod{17}$$

▶
$$10^4 \equiv 225 \equiv 4 \pmod{17}$$

▶
$$10^8 \equiv 16 \pmod{17}$$

• So $x \equiv 10^{13} \equiv 16 \cdot 4 \cdot 10 \equiv 11 \pmod{17}$

lndeed, this algorithm computes a^{γ} mod p in $O(N^3)$ time.

O(N) modular multiplications.

$$10^{13} \equiv 10^{12} \cdot 10$$

$$\equiv 100^{6} \cdot 10 \equiv 15^{6} \cdot 10$$

$$\equiv 225^{3} \cdot 10 \equiv 4^{3} \cdot 10$$

$$\equiv 4^{2} \cdot 40 \equiv 4^{2} \cdot 6$$

$$\equiv 16 \cdot 6 \equiv 96 \equiv 11 \pmod{17}$$

Be creative with your calculators!

- EEA is essential for solving modular algebra equations.
 - In particular, if gcd(a, b) = 1, we can apply EEA to find integers s and t such that as + bt = 1.
- EEA is efficient with a time complexity of O(N³) for N-bit inputs.
- With Fermat's Little Theorem, we are able to solve modular *n*-th root for prime numbers in many cases for O(N³) time as well.