ECE 443/518 – Computer Cyber Security Lecture 08 Euclidean Algorithm, Fermat's Little Theorem

Professor Jia Wang Department of Electrical and Computer Engineering Illinois Institute of Technology

September 16, 2024

Outline

[Euclidean Algorithm](#page-3-0)

[Fermat's Little Theorem](#page-12-0)

- ▶ This lecture: UC 6.3
- ▶ Next lecture: UC 6, 7, except 7.6

Outline

[Euclidean Algorithm](#page-3-0)

[Fermat's Little Theorem](#page-12-0)

Euclidean Algorithm

Input: two integers $a > b > 0$ 1 $r_0 = a, r_1 = b, i = 1$ 2 Do: 3 $i = i + 1$ 4 $r_i = r_{i-2} \mod r_{i-1}$ 5 While $r_i \neq 0$ Output: $gcd(a, b) = r_{i-1}$

Example: $r_0 = 27, r_1 = 21, r_2 = 6, r_3 = 3, r_4 = 0$

- In practice, there is no need to keep each r_k we use them just for ease of presentation.
- ▶ For a proof of correctness

$$
r_{i-1} = gcd(0, r_{i-1}) = gcd(r_i, r_{i-1}) = \dots = gcd(r_k, r_{k-1})
$$

= gcd(r_{k-2} mod r_{k-1}, r_{k-1}) = gcd(r_{k-2}, r_{k-1}) = \dots
= gcd(r_1, r_0) = gcd(a, b)

$$
r_1 > r_2 > \dots > r_{i-1} > r_i = 0
$$

 \blacktriangleright Is this algorithm better than the simple one?

Time Complexity of Euclidean Algorithm

Let
$$
q_{k-1} = \lfloor \frac{r_{k-2}}{r_{k-1}} \rfloor
$$
. Since $r_{k-2} \ge r_{k-1}$, $q_{k-1} \ge 1$. So,

 $r_{k-2} = q_{k-1}r_{k-1} + r_k > r_{k-1} + r_k > 2r_k, \forall k = 2, 3, \ldots, i.$

 \blacktriangleright For *i* being odd, we have,

$$
a=r_0\geq 2r_2\geq 2^2r_4\geq \cdots \geq 2^{\frac{i-1}{2}}r_{i-1}\geq 2^{\frac{i-1}{2}}.
$$

 \blacktriangleright Similar for *i* being even.

 \blacktriangleright The loop iterates $O(\log a) = O(N)$ rounds.

▶ Overall the time complexity is $O(N^3)$.

- \triangleright GCD can be computed efficiently in polynomial time.
	- \triangleright What is the complexity to obtain any divisor of a that is not 1 or a? Or to prove that a is a prime number?

Extended Euclidean Algorithm (EEA)

Input: two integers $a > b > 0$ 1 $r_0 = a$, $r_1 = b$, $s_0 = 1$, $t_0 = 0$, $s_1 = 0$, $t_1 = 1$, $i = 1$ 2 Do: 3 $i = i + 1$ 4 $r_i = r_{i-2} \mod r_{i-1}, q_{i-1} = \lfloor \frac{r_{i-2}}{r_{i-1}} \rfloor$ $\frac{r_{i-2}}{r_{i-1}}$ 5 $s_i = s_{i-2} - q_{i-1}s_{i-1}, t_i = t_{i-2} - q_{i-1}t_{i-1}$ 6 While $r_i \neq 0$ Output: $gcd(a, b) = r_{i-1}, s = s_{i-1}, t = t_{i-1}$

- Same time complexity as Euclidean Algorithm: $O(N^3)$
	- ▶ Same rounds of iterations. Additional calculations do not increase complexity.
- ▶ Anything special?

Extended Euclidean Algorithm (EEA Cont.)

Solve Modular Algebra Equations

- ▶ $ax \equiv b \pmod{m}$
	- Assume $gcd(a, m) = 1$.
	- ▶ Apply EEA to find s and t such that $as + mt = 1$.
	- ▶ Solution: $x \equiv bs$ (mod *m*)
	- ▶ Check: $ax \equiv abs \equiv b(1 mt) \equiv b bmt \equiv b \pmod{m}$.

Time complexity is $O(N^3)$, dominated by EEA.

Examples 1

▶ Solve $5x \equiv 1 \pmod{192}$.

Solve System of Modular Algebra Equations

▶ x ≡ a¹ (mod m1), x ≡ a² (mod m2) ▶ A.k.a. Chinese Remainder Theorem. ▶ Assume gcd(m1, ^m2) = 1. ▶ Apply EEA to find ^s and ^t such that ^m1^s ⁺ ^m2^t = 1. ▶ Solution: ^x [≡] ^a1m2^t ⁺ ^a2m1^s (mod ^m1m2) ▶ Check: ^x [≡] ^a1m2^t [≡] ^a1(1 [−] ^m1s) [≡] ^a¹ (mod ^m1). x ≡ a2m1s ≡ a2(1 − m2t) ≡ a² (mod m2). ▶ In particular, if ^a¹ ⁼ ^a² ⁼ ^a, the solution is x ≡ am2t + am1s ≡ a(m2t + m1s) ≡ a (mod m1m2) ▶ Time complexity is O(N 3), dominated by EEA.

Examples 2

Outline

[Euclidean Algorithm](#page-3-0)

[Fermat's Little Theorem](#page-12-0)

 \blacktriangleright What about modular *n*-th root?

 $x^n \equiv a \pmod{m}$.

▶ Obviously you can solve it via brute-force in $O(2^N)$ time for a N -bit m . However, this is not what we are interested into.

▶ Consider the case when $m = p$ is a prime number first.

Fermat's Little Theorem

 \triangleright Consider an integer x that is not a multiple of p. \triangleright What does the sequence kx mod p look like for $k = 1, 2, \ldots, p - 1?$ A permutation of $1, 2, \ldots, p-1$ since ▶ These $p-1$ remainders are all within $1, 2, \ldots, p-1$. \blacktriangleright They are all different since p is prime. ▶ So $x \cdot (2x) \cdots ((p-1)x) \equiv 1 \cdot 2 \cdots (p-1)$ (mod p). ▶ In other words, $(p-1)!x^{p-1} \equiv (p-1)! \pmod{p}$. ▶ So $x^{p-1} \equiv 1 \pmod{p}$ since $gcd((p-1)!, p) = 1$. ▶ Fermat's Little Theorem: $x^p \equiv x \pmod{p}$ ▶ Also include the case $x \equiv 0 \pmod{p}$. ▶ Example: $2^{13} \equiv 2 \pmod{13}$, $3^{13} \equiv 3 \pmod{13}$.

Solve Modular n-th Root for Prime p

▶ Solve $x^5 \equiv 2 \pmod{13}$. ▶ $x^{10} \equiv 4 \pmod{13}$, $x^{15} \equiv 8 \pmod{13}$, $x^{25} \equiv 6 \pmod{13}$. ▶ Fermat's Little Theorem: $x^{13} \equiv x \pmod{13}$ ▶ So $x^{25} \equiv x^{13}x^{12} \equiv xx^{12} \equiv x \pmod{13}$. ▶ Solution: $x \equiv 6 \pmod{13}$ ▶ How about $x^n \equiv a \pmod{p}$? ▶ Assume $gcd(n, p - 1) = 1$. \blacktriangleright No, you can't use this method if $n = 2$. ▶ Solve $ny \equiv 1 \pmod{p-1}$ for y (via EEA). ▶ Solution: $x \equiv a^y \pmod{p}$, or practically $x = a^y \pmod{p}$. ► Check: $x^n \equiv a^{ny} \equiv a^{(ny) \mod (p-1)} \equiv a \pmod{p}$. \blacktriangleright Time complexity EEA takes $O(N^3)$ time. \triangleright a^y mod p can be completed in $O(N^3)$ time. (How?) ▶ Overall $O(N^3)$ time again!

Square-and-Multiply

 \triangleright Compute 10^{13} mod 17 ▶ $10^{13} \equiv 10^8 \cdot 10^4 \cdot 10^1 \pmod{17}$ **•** Since $13 = (1101)_{2}$ ▶ Use square to calculate 10^2 mod 7, 10^4 mod 7, etc. ▶ $10^2 \equiv 100 \equiv 15 \pmod{17}$ ▶ $10^4 \equiv 225 \equiv 4 \pmod{17}$ **▶ 10⁸** \equiv **16 (mod 17)** ▶ So $x \equiv 10^{13} \equiv 16 \cdot 4 \cdot 10 \equiv 11 \pmod{17}$ Indeed, this algorithm computes a^y mod p in $O(N^3)$ time. \triangleright $O(N)$ modular multiplications.

$$
10^{13} \equiv 10^{12} \cdot 10
$$

\n
$$
\equiv 100^{6} \cdot 10 \equiv 15^{6} \cdot 10
$$

\n
$$
\equiv 225^{3} \cdot 10 \equiv 4^{3} \cdot 10
$$

\n
$$
\equiv 4^{2} \cdot 40 \equiv 4^{2} \cdot 6
$$

\n
$$
\equiv 16 \cdot 6 \equiv 96 \equiv 11 \pmod{17}
$$

▶ Be creative with your calculators!

- \blacktriangleright EEA is essential for solving modular algebra equations.
	- In particular, if $gcd(a, b) = 1$, we can apply EEA to find integers s and t such that $as + bt = 1$.
- EEA is efficient with a time complexity of $O(N^3)$ for N-bit inputs.
- ▶ With Fermat's Little Theorem, we are able to solve modular *n*-th root for prime numbers in many cases for $O(N^3)$ time as well.