
ECE 443/518 – Computer Cyber Security
Lecture 07 Authenticated Encryption

Professor Jia Wang
Department of Electrical and Computer Engineering

Illinois Institute of Technology

September 11, 2024

1/23 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

Outline

Message Authentication Codes

Authenticated Encryption

Complexity Theory

2/23 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

Reading Assignment

▶ This lecture: UC 12, 5.1.6

▶ Next lecture: UC 6.3

3/23 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

Outline

Message Authentication Codes

Authenticated Encryption

Complexity Theory

4/23 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

Motivation

▶ Cryptographic hash functions help to achieve integrity on an
insecure channel with an additional authentic channel.
▶ Without using a secret key.

▶ In the context of symmetric cryptography, since there is
already a secret key, can integrity be achieved without the
additional authentic channel?

▶ Message authentication: prove that the message is authentic.
▶ I.e. created by a party knowing the secrey key.

▶ Don’t confuse it with user authentication.
▶ User authentication: prove you are youself.
▶ Preferably unclonable information but usually via a secret.
▶ But if Alice proves to Oscar that she is Alice by showing Oscar

the secret, how to prevent Oscar to convince Bob that he/she
is Alice by showing the same secret?

5/23 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

Message Authentication Codes (MACs)

▶ MACk(x): a function that returns a fixed-size code that
depends on both the message x and the secret key k .

▶ Alice computes m = MACk(x) and sends (x ,m) to Bob.
▶ Since for now we only discuss integrity, everything except k are

known by the adversary Oscar.

▶ Bob receives (x ′,m′) and verifies that m′ == MACk(x
′).

▶ The active adversary Oscar may change both x and m.

▶ How about use a cryptographic hash function h?
▶ Secret prefix: MACk(x) = h(k ||x)
▶ Secret suffix: MACk(x) = h(x ||k)

6/23 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

Oscar’s Attacks

▶ Most hash functions consume a message byte by byte.

▶ Oscar knows x and m = MACk(x) = h(k||x).
▶ Secret prefix: Oscar can compute h(k ||x ||y) by initializing h

with h(k ||x) and then proceed with the message y .
▶ There is no need to know k to compute

MACk(x ||y) = h(k ||x ||y).
▶ Secret suffix: if Oscar knows h(x ′) == h(x) from birthday

attack on h, then h(x ′||k) == h(x ||k).
▶ There is no need to know k to compute MACk(x

′) = h(x ′||k).
▶ Better solutions?

7/23 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

HMAC

(Paar and Pelzl)
▶ RFC 2104 (1997), FIPS PUB 198-1 (2008)
▶ Use a cryptographic hash function h

▶ k+: zero extended to match hash block size.
▶ Padding: 0x5c for opad and 0x36 for ipad.
▶ Usually without using the IV.

8/23 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

CBC-MAC

(Paar and Pelzl)

▶ Use a block cipher. Only need encryption e().
▶ A lot of pitfalls exist

▶ Use a random IV (shown above as suggested by the textbook!)
▶ Not include message length.
▶ Share the secret key for encryption and MAC.
▶ etc.

▶ Don’t implement your own. Use an established library.

9/23 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

GMAC

▶ A variant of the Galois Counter Mode (GCM).

▶ Usually a MAC is used together with a symmetric cipher to
provide both confidentiality and integrity so let’s delay the
discussion of GMAC to GCM.

10/23 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

Outline

Message Authentication Codes

Authenticated Encryption

Complexity Theory

11/23 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

Motivation

▶ It is quite intuitive that one may combine a symmetric ciphers
and a MAC to achieve confidentiality and integrity (including
message authentication) with a secret key.

▶ Three possible combinations
▶ Encrypt-then-MAC: append MAC of ciphertext to ciphertext
▶ Encrypt-and-MAC: append MAC of plaintext to ciphertext
▶ MAC-then-Encrypt: append MAC of plaintext to plaintext

▶ Which one?

12/23 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

Chosen Ciphertext Attacks

▶ Oscar may create ciphertexts.
▶ Usually by modifying ciphertexts sending by Alice.

▶ Then Oscar may send them to Bob and observe how Bob
decrypts/validates them.
▶ Bob may response whether the message decrypts/validates

correctly.
▶ Oscar may further meature time taken by Bob to generate the

response (side channel).

▶ For both Encrypt-and-MAC and MAC-then-Encrypt, the
validation is with plaintext so that Oscar may obtain plaintext
bit-by-bit if he/she may modify ciphertext to cause a few bits
to change in plaintext.

▶ Not a concern for Encrypt-then-MAC as Bob will reject
incorrect ciphertexts without decrypt them and Oscar learns
nothing.

13/23 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

Galois Counter Mode (GCM)

(Wikipedia)

▶ NIST Special Publication 800-38D (2007), various RFCs

▶ Work with block ciphers using 128-bit blocks.

14/23 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

More on GCM

▶ Encryption/decryption are in the Counter Mode.
▶ Counter 0 is derived from the IV.

▶ MAC
▶ Allow to include additional authenticated data (AAD), i.e.

Auth Data 1 in the figure, that require only integrity but no
confidentiality.

▶ Compute authentication subkey H = ek(0).
▶ Treat all 128-bit blocks (padding as needed) as numbers in the

Galois field GF (2128) and perform multiplications and
additions to generate Auth Tag.

▶ It is critical that the combined choice of k and IV should be
unique. Otherwise the GCM mode is not secure.

▶ In addition to GCM, other modes for authenticated encryption
exist.

15/23 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

GCM Implementation

▶ Block cipher in counter mode.
▶ No need to implement block decryption.
▶ Can be parallelized.
▶ Usually use AES to leverage existing hardware accelerations.

▶ MAC essentialy evaluates a polynomial.
▶ Can be parallelized.
▶ Addition in GF (2128) is bitwise XOR.
▶ Multiplication can be accelerated by special hardware,

accessible on many modern processors through special
instructions.

16/23 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

Outline

Message Authentication Codes

Authenticated Encryption

Complexity Theory

17/23 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

Greatest Common Divisor (GCD)

▶ gcd(a, b): greatest common divisor of integers a and b.
▶ Assume at least one of a and b is not 0.

▶ Examples
▶ gcd(27, 21) = 3
▶ gcd(10, 12) = 2
▶ gcd(3, 16) = 1
▶ gcd(4, 16) = 4

▶ Algorithm to compute gcd() on computers?

18/23 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

Simple GCD Algorithm

Input: two integers a ≥ b > 0
1 For k = b downto 1:
2 If (b mod k == 0) and (a mod k == 0):
3 Report gcd(a, b) = k

▶ How efficient is the algorithm?
▶ As you may have observed and guessed, the most time

consuming parts are the mod operations in the loop.
▶ In the worse case when gcd(a, b) = 1, there are 2b mod

operations.

▶ Still, we need complexity theory to understand how good or
how bad that is.

19/23 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

The Big-O Notation

▶ Performance of an algorithm
▶ Time complexity: how long does it take?
▶ Space complexity: how many memory does it consume?
▶ Complexities depend on problem sizes.

▶ The measure should be independent of computer architectures
and clock frequencies.
▶ A rough measure of trends for large problem sizes.

▶ The big-O notation: complexity measure of trends
▶ N: problem size
▶ O(1): the complexity is independent of problem size
▶ O(N): the complexity grows no faster than N
▶ O(N2): the complexity grows no faster than N2

▶ O(2N): the complexity grows no faster than 2N

▶ And so on ...

20/23 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

Time Complexity of Simple GCD Algorithm

▶ Problem size N: assume a and b are N-bit numbers.
▶ Complexity of arithmetic operations

▶ Addition and subtraction: O(N)
▶ Multiplication, division, and mod: O(N2) (could be better)
▶ What about power and exponential?

▶ Time complexity of simple GCD algorithm: O(2NN2).

21/23 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

Cryptography Meets Complexity

▶ Exponential time vs polymonial time
▶ Exponential time: O(2N), O(3N), etc.

▶ E.g. brute-force attack on N-bit keys take O(2N) time.

▶ Polymonial time: O(N), O(N2), O(N1000),etc.

▶ Exponential time (or worse) algorithms are too slow for
computationally bounded parties (for large N).

▶ Computationally bounded parties can execute polynomial time
algorithms efficiently (for large N).

▶ Assume all of Alice, Bob, and Oscar have bounded
computational power.
▶ If there is a problem Alice and Bob could solve in polynomial

time,
▶ while Oscar need to spend exponential or more time to solve,
▶ then Alice and Bob could always choose a large enough N so

that they can solve it but Oscar cannot solve it practically.

22/23 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

Summary

▶ MAC authenticates the message using the secret key.

▶ While it appears to be intuitive to create your own MAC for
message authentication, or to combining block ciphers with
MAC for authenticated encryption, there are a lot of pitfalls
for both design and implementaion – you should follow
documented standards exactly or use an established library
instead.

23/23 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

	Message Authentication Codes
	Authenticated Encryption
	Complexity Theory

