1/23

ECE 443/518 — Computer Cyber Security
Lecture 07 Authenticated Encryption

Professor Jia Wang
Department of Electrical and Computer Engineering
lllinois Institute of Technology

September 11, 2024

ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT

Outline

Message Authentication Codes

Authenticated Encryption

Complexity Theory

2/23 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT

Reading Assignment

» This lecture; UC 12, 5.1.6
» Next lecture: UC 6.3

3/23 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT

Outline

Message Authentication Codes

4/23 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT

Motivation

» Cryptographic hash functions help to achieve integrity on an
insecure channel with an additional authentic channel.

» Without using a secret key.

» In the context of symmetric cryptography, since there is
already a secret key, can integrity be achieved without the
additional authentic channel?

> Message authentication: prove that the message is authentic.

» |.e. created by a party knowing the secrey key.
» Don't confuse it with user authentication.
» User authentication: prove you are youself.
» Preferably unclonable information but usually via a secret.
» But if Alice proves to Oscar that she is Alice by showing Oscar
the secret, how to prevent Oscar to convince Bob that he/she
is Alice by showing the same secret?

5/23 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT

Message Authentication Codes (MACs)

>

>

>

| 2

6/23

MACk(x): a function that returns a fixed-size code that
depends on both the message x and the secret key k.
Alice computes m = MACy(x) and sends (x, m) to Bob.

» Since for now we only discuss integrity, everything except k are
known by the adversary Oscar.

Bob receives (x’, m') and verifies that m’ == MAC(x').
» The active adversary Oscar may change both x and m.
How about use a cryptographic hash function h?
» Secret prefix: MAC(x) = h(k||x)
» Secret suffix: MAC(x) = h(x||k)

ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT

Oscar's Attacks

7/23

Most hash functions consume a message byte by byte.
Oscar knows x and m = MAC(x) = h(k||x).

Secret prefix: Oscar can compute h(k||x||y) by initializing h
with h(k||x) and then proceed with the message y.

» There is no need to know k to compute
MAC,(x[ly) = h(k|[x]ly).
Secret suffix: if Oscar knows h(x") == h(x) from birthday
attack on h, then h(x'||k) == h(x||k).
» There is no need to know k to compute MAC,(x") = h(x'||k).

Better solutions?

ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT

HMAC

HMAC (x)

Fig. 12.2 HMAC construction

» RFC 2104 (1997), FIPS PUB 198-1 (2008)
» Use a cryptographic hash function h

» kT: zero extended to match hash block size.
» Padding: 0x5c for opad and 0x36 for ipad.
» Usually without using the IV.

(Paar and Pelzl)

8/23 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT

CBC-MAC

Vi (m, (X...X1)) m'=yy,

m = y,= MAC(x) T verification

m=m'

Fig. 12.3 MAC built from a block cipher in CBC mode

(Paar and Pelzl)
» Use a block cipher. Only need encryption e().
> A lot of pitfalls exist

» Use a random IV (shown above as suggested by the textbook!)
» Not include message length.

» Share the secret key for encryption and MAC.

> etc.

» Don't implement your own. Use an established library.

9/23 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT

GMAC

» A variant of the Galois Counter Mode (GCM).

» Usually a MAC is used together with a symmetric cipher to
provide both confidentiality and integrity so let's delay the
discussion of GMAC to GCM.

10/23 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT

Outline

Authenticated Encryption

11/23 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT

Motivation

P It is quite intuitive that one may combine a symmetric ciphers
and a MAC to achieve confidentiality and integrity (including
message authentication) with a secret key.

» Three possible combinations

» Encrypt-then-MAC: append MAC of ciphertext to ciphertext
» Encrypt-and-MAC: append MAC of plaintext to ciphertext
» MAC-then-Encrypt: append MAC of plaintext to plaintext

» Which one?

12/23 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT

Chosen Ciphertext Attacks

| 2

>

13/23

Oscar may create ciphertexts.
» Usually by modifying ciphertexts sending by Alice.
Then Oscar may send them to Bob and observe how Bob
decrypts/validates them.
» Bob may response whether the message decrypts/validates
correctly.
» Oscar may further meature time taken by Bob to generate the
response (side channel).
For both Encrypt-and-MAC and MAC-then-Encrypt, the
validation is with plaintext so that Oscar may obtain plaintext
bit-by-bit if he/she may modify ciphertext to cause a few bits
to change in plaintext.

Not a concern for Encrypt-then-MAC as Bob will reject
incorrect ciphertexts without decrypt them and Oscar learns
nothing.

ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT

Galois Counter Mode (GCM)

Ex Ex Ex
[Pameet }o [Pz b
’—.El N

B mat
e Tee}
=

N

(Wikipedia)
» NIST Special Publication 800-38D (2007), various RFCs

> Work with block ciphers using 128-bit blocks.

14/23 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT

More on GCM

>

>

15/23

Encryption/decryption are in the Counter Mode.
» Counter 0 is derived from the IV.
MAC
> Allow to include additional authenticated data (AAD), i.e.
Auth Data 1 in the figure, that require only integrity but no
confidentiality.
» Compute authentication subkey H = e(0).
> Treat all 128-bit blocks (padding as needed) as numbers in the
Galois field GF(2'?8) and perform multiplications and
additions to generate Auth Tag.

It is critical that the combined choice of k and IV should be
unique. Otherwise the GCM mode is not secure.

In addition to GCM, other modes for authenticated encryption
exist.

ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT

GCM Implementation

» Block cipher in counter mode.
» No need to implement block decryption.
» Can be parallelized.
» Usually use AES to leverage existing hardware accelerations.
» MAC essentialy evaluates a polynomial.
» Can be parallelized.
> Addition in GF(21%8) is bitwise XOR.
» Multiplication can be accelerated by special hardware,
accessible on many modern processors through special
instructions.

16/23 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT

Outline

Complexity Theory

17/23 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT

Greatest Common Divisor (GCD)

» gcd(a, b): greatest common divisor of integers a and b.
» Assume at least one of a and b is not 0.
> Examples
> gcd(27,21) =3
> gcd(10,12) =2
> gcd(3,16) =1
> gcd(4,16) =4

» Algorithm to compute gcd() on computers?

18/23 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT

Simple GCD Algorithm

Input: two integers a > b >0
1 For k = b downto 1:
2 If (b mod k ==0) and (a mod kK == 0):
3 Report gcd(a, b) = k

» How efficient is the algorithm?
» As you may have observed and guessed, the most time
consuming parts are the mod operations in the loop.
» In the worse case when gcd(a, b) = 1, there are 2b mod
operations.

» Still, we need complexity theory to understand how good or
how bad that is.

19/23 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT

The Big-O Notation

» Performance of an algorithm
» Time complexity: how long does it take?
» Space complexity: how many memory does it consume?
» Complexities depend on problem sizes.

» The measure should be independent of computer architectures
and clock frequencies.
> A rough measure of trends for large problem sizes.
» The big-O notation: complexity measure of trends
> N: problem size
O(1): the complexity is independent of problem size
O(N): the complexity grows no faster than N
O(N?): the complexity grows no faster than N2
O(2"): the complexity grows no faster than 2"

»
»
| 2
| 2
» And soon ...

20/23 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT

Time Complexity of Simple GCD Algorithm

» Problem size N: assume a and b are N-bit numbers.
» Complexity of arithmetic operations

> Addition and subtraction: O(N)
> Multiplication, division, and mod: O(N?) (could be better)
» What about power and exponential?

» Time complexity of simple GCD algorithm: O(2VN?).

21/23 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT

Cryptography Meets Complexity

» Exponential time vs polymonial time
> Exponential time: O(2"), O(3"), etc.
> E.g. brute-force attack on N-bit keys take O(2") time.
> Polymonial time: O(N), O(N?), O(N9) etc.
» Exponential time (or worse) algorithms are too slow for
computationally bounded parties (for large N).

» Computationally bounded parties can execute polynomial time
algorithms efficiently (for large N).
» Assume all of Alice, Bob, and Oscar have bounded
computational power.
» |f there is a problem Alice and Bob could solve in polynomial
time,
» while Oscar need to spend exponential or more time to solve,
» then Alice and Bob could always choose a large enough N so
that they can solve it but Oscar cannot solve it practically.

22/23 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT

Summary

>
>

23/23

MAC authenticates the message using the secret key.

While it appears to be intuitive to create your own MAC for
message authentication, or to combining block ciphers with
MAC for authenticated encryption, there are a lot of pitfalls
for both design and implementaion — you should follow
documented standards exactly or use an established library
instead.

ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT

	Message Authentication Codes
	Authenticated Encryption
	Complexity Theory

