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Reading Assignment

» This lecture;: UC 11.2, 11.3, 11.5
> Next lecture: UC 12, 5.1.6
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Motivation

» How should we address active adversaries?
» Who can modify messages or even introduce messages.
» Three steps

» Integrity without a secret key: Cryptographic Hash Functions
» Integrity with a secret key: Message Authentication Codes
» Confidentiality and integrity: Authenticated Encryption
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Integrity without Secret Key

6/17

Alice has developed a marvelous game and wants everyone to
play it.

The installation package is huge — Alice decides to seek help
from third parties for distribution.

» Because required bandwidth is either too expensive or
technically infeasible.
» E.g. via BitTorrent.

It is not possible for Bob, who wants to download the game,
to setup a secret key with Alice.

Oscar, who participates in package distribution, plans to add
his/her own adware to the package to make some profit.

Integrity: how to design a mechanism to ensure Bob to
receive the authentic package from Alice?
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Hash Functions

message message digest

Alice was beginning to get very tired of
sitting by her sister on the bank,
and having nothing to do.

DFDC349A

‘ I'am not a crook. ‘ FB93E283

R

‘ I am not a cook. ‘ A3F4439B

=/ o\

Fig. 11.3 Principal input—output behavior of hash functions
(Paar and Pelzl)
» Input x: messages of arbitrary lengths
» Output z = h(x): message digest, a.k.a fingerprint, with fixed
size, say m bits.
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Alice's Mechanism

» From the package x,, Alice publishes the message digest
z = h(x,) on her website.
P> The message digest is so short, e.g. m = 256, that Alice
doesn't need to worry about bandwidth.
» Bob obtains the package xp, computes z, = h(xp), and
verifies that z, == z.
» Can Bob be sure x, == x, now? Don't try to answer it now —
state your assumptions and think of attacks!
» Assumption: Oscar can't modify z on Alice’s website.

> |.e. an authentic channel that guarentees only integrity —
anyone can see but no one could modify z.

» In comparison with the secure channel that guarentees both
confidentiality and integrity to setup secret keys.

» Attack: Oscar create a package with the same message digest
so that Bob won't find out what he received is not authentic.
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Preimage Resistance (One-Wayness)

Given a hash function h and a message digest z, find a message x
such that:
z == h(x).

» Prevent someone to recover x from z.

» But mathematically there are infinite many such x exists.

» Preimage resistance prevents computationally bounded Oscar
to derive x, # x, from z and h such that z == h(x,).

» But what if Oscar uses knowledge of x,?
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Second Preimage Resistance (Weak Collision Resistance)

Given a hash function h, a message x; and its message digest
z1 = h(x1), find a message x» # xj such that,

71 == h(x).

» Weak collision is unavoidable: x, always exists.
» Collision: different messages map to the same message digest.

» Second preimage resistance prevents computationally bounded
Oscar to derive x, # x5 from z, h, x, such that z == h(x,).
» With preimage and second preimage resistance, Oscar can
only perform brute-force attack: choose x, randomly and
compute z, = h(x,) to check if z, == z.
> Probability of success after N times: 1 — (1 — 55)".
» About 63% for N = 2™: not a concern for computationally
bounded Oscar if m is large enough.
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Oscar’s Trick

> Knowing there may exist little hope to modify Alice's package
without being caught, Oscar decides to create his/her own
game package to distribute the adware.
» Oscar's trick: create two packages x and x’ such that
> h(x) == h(x)
» Good package x: just the game.
» Bad package x’: the game and the adware.
» Oscar then delivers x” to Bob through third parties.

» If Bob finds the adware in x’, Oscar shows Bob x and claims
someone else creates x’.

» Will second preimage resistance help?
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(Strong) Collision Resistance

Given a hash function h, find two messages x; # x» such that:
h(x2) == h(x1).

» Birthday Attack: what is the probability that two in our class

have the same birthday?
» How many students are needed to have a 50% chance of two
colliding birthdays? 23.

» Roughly speaking, if Oscar creates 27 random packages, then
there is 50% chance of collision.

» Bob may still resist such attack by requesting m to be large
enough.
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Cryptographic Hash Functions

» Cryptographic Hash Functions: a hash function that is

> Preimage resistant

» Second preimage resistant

> (Strong) collision resistant

» With a proper choice of m.
» As of now, consider m = 256 or more.
» Be so even under cryptanalysis.

» A “bad" choice of h may lead to failure of preimage resistance,
attack of second preimage resistance using far less than 2™
messages, or attack of strong collision resistance using far less
than 2% messages.

» E.g. cyclic redundancy check (CRC) is a good hash function
against data corruption but not a good cryptographic hash
function.
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Cryptographic Hash Function Choices
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The MD4 Family

» MD5: RFC 1321 (1992), 128-bit
»> Was widely used, “no longer acceptable where collision
resistance is required” per RFC 6151.
» SHA-1: FIPS PUB 180-1 (1995), 160-bit
» Successful recent efforts to generate collision.
» Should be phased out.
» SHA-2: FIPS PUB 180-2 (2001), FIPS PUB 180-4 (2015)
> SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224,
SHA-512/256.
» Were adopted slowly but widely in use now — Bitcoin
contributes to 102 ~ 257 SHA-256 hashes per second as of

recently.
> A lot of ongoing attacking efforts.
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SHA-3

> FIPS PUB 202 (2015)
» Via an open selection process like AES starting 2006.

>

Not meant to replace SHA-2, but as an alternative.

» Finalists

>

>
>
>
>

BLAKE: based on a stream cipher

Groestl: use a lot of constructs from AES

JH

Keccak: based on sponge construction

Skein: based on a block cipher and a variant of
Matyas-Meyer-Oseas.

» Winner: Keccak
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Summary

» Cryptographic hash functions need to be preimage resistant,
second preimage resistant, and (strong) collision resistant.

» As of now, we should use hash functions with at least 256 bits
hashes.

» Use SHA-2 and SHA-3.
» Avoid MD5 and SHA-1.
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