
ECE 443/518 – Computer Cyber Security
Lecture 05 Go

Professor Jia Wang
Department of Electrical and Computer Engineering

Illinois Institute of Technology

September 4, 2024

1/22 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

Outline

Go Introduction

Cryptography in Go

2/22 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

Reading Assignment

▶ This lecture: Go introduction

▶ Next lecture: UC 11.2, 11.3, 11.5, 12, 5.1.6

3/22 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

Outline

Go Introduction

Cryptography in Go

4/22 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

Go

▶ The Go programming language.
▶ Version 1.0: March 2012

▶ Modernization of C for simplicity, safety, and readability.
▶ Package management, garbage collection, concurrency, etc.
▶ Simplified C syntax with standard tool to format code.
▶ Exactly the same value semantics as C.
▶ Adopt common C patterns to support array/slice and OOP.

5/22 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

Hello World

// hw/hw.go

package main

import "fmt"

func main() {

fmt.Println("Hello world!")

}

▶ Go uses the same entrypoint main as C.
▶ It has to be inside package main

▶ Save the code to hw.go and run it via go run hw.go

▶ Language features
▶ Both // and /**/ work for comments
▶ Use import instead of #include
▶ Use func to define a function
▶ No need to use ;
▶ { must be at the end of the line

6/22 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

Variable

// swap/main.go

package main

import "fmt"

func main() {

var a int = 1

b := 2

fmt.Printf("before swap: a = %d, b = %d\n", a, b)

swap(&a, &b)

fmt.Printf("after swap: a = %d, b = %d\n", a, b)

}

▶ A variable can be defined using var and then initialized.
▶ Or you can use := to define and initialize a variable.

▶ Without the need to specify a type.
▶ The variable still has a type and cannot be changed.

▶ Usually, library names are lowercase while library functions are
uppercase.

7/22 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

Pointer

// swap/swap.go

package main

func swap(pa, pb *int) {

*pa, *pb = *pb, *pa

}

▶ Pointers *T are addresses to variables of type T
▶ Allow you to change a variable outside of the current function.
▶ Same as C, use & to take address for a variable and use * to

refer to the variable using the pointer.

▶ Types can be omitted for the function parameters if they have
the same type.

▶ Multiple variables can be assigned at the same time.

8/22 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

Go Module

▶ Since swap is in a different file as main, we cannot run this
more complicated program directly.

▶ Use go mod init swap to initialize a Go module to manage
multiple go files.

▶ Run it as go run .
▶ You can also debug it in VSCode or other IDEs.

9/22 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

Array and Slice

// slice/slice.go

package main

import "fmt"

func main() {

var a [10]int

s := make([]int, 0)

for i := 0; i < 10; i++ {

a[i] = i

s = append(s, i*i)

}

for i, val := range s {

fmt.Printf("s[%d]=%d=%d*%d\n", i, val, a[i], a[i])

}

}

▶ Arrays like a, as those in C/C++/Java, are of fixed size.
▶ Slices like s are more flexible.

▶ Use make to create a slice with initial size.
▶ Use append to append an element to the end.

▶ Use [] to access elements using 0-based indices.
10/22 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

for Loops

for i := 0; i < 10; i++ {

a[i] = i

s = append(s, i*i)

}

for i, val := range s {

fmt.Printf("s[%d]=%d=%d*%d\n", i, val, a[i], a[i])

}

▶ The most simple for loops use three statements
for initialization; condition; postcondition
▶ Similar to C/C++/Java but no parentheses
▶ You’ll need to use i++ instead of ++i

▶ The range for loops allow to obtain both the index and the
element at the same time.

▶ Use break to exit the loop.

▶ Use continue to exit the current iteration.

11/22 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

More for Loops

// a while loop

for condition {

...

}

// an infinite loop

for {

...

}

▶ There is no while or do while loop in Go. Every loop is a
for loop.

12/22 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

What is a slice?

func assign() {

a := []int{0, 1, 2, 3, 4}

b := a

b[0] = 100

fmt.Printf("after assign: a=%v, b=%v\n", a, b)

}

▶ A slice stores the address of the first element and the number
of elements.
▶ A memory area is allocated from the heap to store the

elements.
▶ No, you don’t need to call malloc, free, etc. like in C or

other languages.
▶ [] will be able to check if the index is out of bound or not.

▶ Assignment = will only copy the address and the length so
now a and b refer to the same memory area.

13/22 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

Copy a Slice

func mycopy() {

a := []int{0, 1, 2, 3, 4}

b := make([]int, len(a))

copy(b, a)

b[0] = 100

fmt.Printf("after copy: a=%v, b=%v\n", a, b)

}

▶ The copy function is able to make a copy of the slice so that
you can have two slices referring to two separated memory
areas.

14/22 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

Slicing a Slice

func slicing() {

a := []int{0, 1, 2, 3, 4}

b := a[1:3]

c := a[:len(a)-1]

d := a[2:]

fmt.Printf("a=%v, b=%v, c=%v, d=%v\n", a, b, c, d)

}

▶ Use [begin:end] to slicing a slice.
▶ Half close half open (begin included, end excluded).
▶ begin = 0 if omitted, end = len() if omitted.
▶ No negative indices like in Python.

▶ Slicing is essentially pointer arithmetics in C so all the slices a,
b, c, d now share the same memory area.
▶ What if we change a[2] to 100? b[1], c[2], and d[0] will

all change to 100
▶ If we append to a later, We should not use b, c, and d any

more!

15/22 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

Branches

// rand/rand.go

package main

import (

"fmt"

"math/rand"

)

func main() {

d := rand.Float64()

if d < 0.4 {

fmt.Println("Win!")

} else if d > 0.6 {

fmt.Println("Lose!")

} else {

fmt.Println("Tie!")

}

}

▶ Similar to C/C++/Java but no parentheses.
▶ Recall that { must be at the end of the line
▶ If there is an else, then } must be on the same line as well.

16/22 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

More Tutorials

▶ Tutorials can be found at https://go.dev/doc/tutorial/

▶ Use the Go Playground https://go.dev/play/

17/22 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

https://go.dev/doc/tutorial/
https://go.dev/play/

Outline

Go Introduction

Cryptography in Go

18/22 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

The Go crypto Package

// crypto/crypto.go

package main

import (

"crypto/aes"

"crypto/cipher"

"crypto/rand"

"encoding/hex"

"fmt"

"io"

)

▶ The Go crypto package provides many standardized
cryptographg functions.
▶ Together with many other packages like hex that allows to

handle bytes and messages conveniently.

19/22 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

AES in CBC Mode

key, _ := hex.DecodeString("000102030405060708090A0B0C0D0E0F")

plaintxt := "0123456789ABCDEF0123456789ABCDEF"

pbuf := []byte(plaintxt)

iv := make([]byte, 16)

rand.Read(iv)

aes, _ := aes.NewCipher(key)

cbcEnc := cipher.NewCBCEncrypter(aes, iv)

ciphertxt := make([]byte, len(pbuf))

cbcEnc.CryptBlocks(ciphertxt, pbuf)

cbcDec := cipher.NewCBCDecrypter(aes, iv)

pbuf2 := make([]byte, len(ciphertxt))

cbcDec.CryptBlocks(pbuf2, ciphertxt)

decrypted := string(pbuf2)

▶ Padding is ignored – the message is of multiples of 16 bytes

▶ Need to convert between strings and bytes for text messages.

▶ Use the crypto/rand package to generate cryptographically
secure pseudorandom IV.

20/22 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

AES in Counter Mode

key, _ := hex.DecodeString("000102030405060708090A0B0C0D0E0F")

plaintxt := "0123456789ABCDEF0123456789"

pbuf := []byte(plaintxt)

iv := make([]byte, 16)

rand.Read(iv)

aes, _ := aes.NewCipher(key)

ctrStream := cipher.NewCTR(aes, iv)

ciphertxt := make([]byte, len(pbuf))

ctrStream.XORKeyStream(ciphertxt, pbuf)

ctrStream2 := cipher.NewCTR(aes, iv)

pbuf2 := make([]byte, len(ciphertxt))

ctrStream2.XORKeyStream(pbuf2, ciphertxt)

decrypted := string(pbuf2)

▶ No padding is needed.

21/22 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

Summary

▶ Why Go?
▶ A modern language supporting many easy-to-use features.
▶ Able to work with memory bytes at low level.
▶ A crypto library incorporating standardized cryptography

practices.

22/22 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

	Go Introduction
	Cryptography in Go

