ECE 443/518 – Computer Cyber Security Lecture 03 Stream Ciphers

Professor Jia Wang Department of Electrical and Computer Engineering Illinois Institute of Technology

August 26, 2024

[One-Time Pad](#page-3-0)

[Random Number Generators](#page-9-0)

[Stream Ciphers](#page-12-0)

▶ This lecture: UC 2

▶ Next lecture: UC 3, 4 except 4.3, $5.1 - 5.1.5$

Outline

[One-Time Pad](#page-3-0)

[Random Number Generators](#page-9-0)

[Stream Ciphers](#page-12-0)

Overview: The Substitution Cipher

- ▶ Large key space helps to resist brute-force attacks from computationally bounded passive adversaries.
- ▶ Effective cryptanalysis methods exist because ciphertext leaks statistics of plaintext.
- ▶ If a cipher could resist brute-force attacks from computationally unbounded passive adversaries, will it also resist any cryptanalysis method?
	- ▶ Including those cryptanalysis methods designed by someone really smart in future?
- ▶ Unconditional security
	- \blacktriangleright A.k.a. information-theoretically secure
	- ▶ If a cryptosystem cannot be broken even with infinite computational resources.

Given y, $e()$, and $d()$, find x and k such that:

$$
y=e_k(x), \text{ and } x=d_k(y).
$$

- \blacktriangleright Key space K: the set of all possible keys
- ▶ For each $k \in K$, compute $x = d_k(y)$ and report k if x is meaningful.
- ▶ What does "meaningful" mean?
- ▶ What if there are many k's such that $x = d_k(y)$ is meaningful?

One-Time Pad (OTP)

\n- Plaintext:
$$
x = x_0, x_1, \ldots
$$
, where $x_j \in \{0, 1, \ldots, N-1\}$.
\n- Key: $k = k_0, k_1, \ldots$, where $k_j \in \{0, 1, \ldots, N-1\}$.
\n- Choose a key that is of the same length as the message.
\n- Ciphertext: $y = y_0, y_1, \ldots$, where $y_j \in \{0, 1, \ldots, N-1\}$.
\n- Elpertext: $y = y_0, y_1, \ldots$, where $y_j \in \{0, 1, \ldots, N-1\}$.
\n- Elpertext: $y = y_0, y_1, \ldots$, where $y_j \in \{0, 1, \ldots, N-1\}$.
\n- Elpertext: $y = e_k(x)$ where $y_j = (x_j + k_j) \mod N$.
\n- For N being power of 2, e.g. bytes, using x or is also popular.
\n- For any $y = e_k(x)$, there exists x' and k' such that $x' = d_{k'}(y)$.
\n- So the adversary cannot tell whether the actual plaintext is x or x' .
\n

OTP and Unconditional Security

- ▶ For unconditional security, usually we prefer to choose a key, say k' , such that for $x'=d_{k'}(y)$, x' is equally probable among all valid plaintexts.
	- ▶ Otherwise adversaries may learn that some plaintexts are more probable than others, eventually breaking the cryptosystem.
- \triangleright For OTP, this implies the key k should be chosen uniformly from the key space.
- ▶ One-Time
	- ▶ For different messages, when the key space is large enough, very unlikely you'll generate the same k twice for uniform distribution.
	- If you reuse k for the messages with the same length and the adversaries know that, then they can learn correlations among plaintext from correlations among ciphertext, potentially learning even more.

Practical Considerations

\blacktriangleright Key establishment

- ▶ Need a random key for every message.
- ▶ Size of each random key is the same as each message.
- \blacktriangleright If Alice and Bob have a secure channel to communicate these keys, why don't they just use it to send messages?
- ▶ Pre-shared random bits
	- ▶ Work for finite number of messages
- ▶ How to generate random bits?
- ▶ Can we generate more random bits from some random "seeds" deterministically?
	- ▶ So Alice and Bob can get more key bits from existing key bits?

Outline

[One-Time Pad](#page-3-0)

[Random Number Generators](#page-9-0)

[Stream Ciphers](#page-12-0)

True Random Number Generators (TRNG)

- ▶ True random number generators: output cannot be reproduced.
	- ▶ Via a random physical process, e.g. flipping a fair coin multiple times.
- \triangleright Yes, computers can collect/generate true random bits.
	- ▶ Special TRNG devices: semiconductor noise, clock jitter, radioactive decay, etc.
	- ▶ Software measurements: delay variation between events, e.g. network packets and user inputs.
	- ▶ Concerns: speed, correlation between neighboring measurements.
- ▶ No, we can't generate more true random bits from some random "seeds" deterministically.
	- ▶ By definition of true random number.

Pseudorandom Number Generators (PRNG)

▶ Pseudorandom number generators: generate sequences using a seed deterministically, usually via a function f ,

 $s_0 = \text{seed}, s_{i+1} = f(s_i, s_{i-1}, \ldots).$

- ▶ Statistically similar to true random sequences.
- \blacktriangleright Reproducible.

▶ Widely used for simulation and testing.

- ▶ Most are predictable: one can derive the seed by observing a sub-sequence, and then predict what comes next.
	- ▶ Not suitable for use in cryptosystem where the seed should be a secret.
	- ▶ A major source of weakness for homebrew cryptosystems.
- ▶ Cryptosystem need to use unpredictable cryptographically secure pseudorandom number generators (CSPRNG).

Outline

[One-Time Pad](#page-3-0)

[Random Number Generators](#page-9-0)

[Stream Ciphers](#page-12-0)

Stream Ciphers

Fig. 2.2 Principles of encrypting b bits with a stream (a) Fig. 2.3 Synchronous and asynchronous stream ciphers (Paar and Pelzl)

- \blacktriangleright Encode plaintext x and ciphertext y both as binary strings.
- \blacktriangleright Generate a key stream s from the secret key k.
	- \blacktriangleright Synchronous: s depends only on k .
	- \blacktriangleright Asynchronous: s depends on both k and x
- ▶ Usually use xor \oplus to encrypt x into y using s.
	- ▶ Same function for both encryption and decryption.
	- \blacktriangleright Allow to process x, y, and s as blocks of bits.

(Synchronous) Stream Ciphers

Fig. 2.5 Practical stream ciphers

(Paar and Pelzl)

- ▶ What's the difference between stream ciphers and OTP?
- ▶ What's the danger to NOT use CSPRNG for the key stream generator?
- ▶ If Alice want to send a second message to Bob using the same key K , should she restart the key stream generator?

Known-Plaintext Attack and CSPRNG

 \triangleright Oscar may know some (but not all) bits of x

- ▶ Packet headers, file headers, etc.
- ▶ Or Oscar may even trigger Alice to send some information whose plaintext could be known.
- \triangleright When the plaintext x is encrypted with the key stream s bit by bit via xor, for those known x bits, adversaries may recover the corresponding bits in s.
- \triangleright So the key stream generator must be CSPRNG otherwise adversaries may predict all following bits of s, and then decrypt y to obtain x .

Linear Congruential Generator is NOT CSPRNG

$$
S_0 = \text{seed},
$$

\n...
\n
$$
S_{i+1} \equiv AS_i + B \pmod{m},
$$

\n
$$
S_{i+2} \equiv AS_{i+1} + B \pmod{m},
$$

\n...

- ▶ A widely used software PRNG.
- \blacktriangleright $k =$ (seed, A, B): secret.
- \blacktriangleright m: known cryptosystem parameter.
- S_i, S_{i+1}, S_{i+2} : consecutive blocks of bits in the key stream
- ▶ Possible to solve for A and B if S_i , S_{i+1} , S_{i+2} are obtained via known-plaintext attacks.

LFSR is NOT CSPRNG

Fig. 2.7 General LFSR with feedback coefficients p_i and initial values s_{m-1}, \ldots, s_0 (Paar and Pelzl)

$$
s_{i+m} \equiv s_{i+m-1}p_{m-1} + \cdots + s_{i+1}p_1 + s_i p_0 \pmod{2}.
$$

▶ A widely used hardware PRNG: ⊕ for xor, ⊗ for and

$$
\blacktriangleright k = (p_0, p_1, \ldots, p_{m-1})
$$
: secret.

▶ Possible to solve for $p_0, p_1, \ldots, p_{m-1}$ if 2m consecutive bits of s are obtained via known-plaintext attacks.

▶ Can we prove that a PRNG is a CSPRNG?

- ▶ One-time pad and unconditional security
- ▶ Stream ciphers and CSPRNG