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Reading Assignment

▶ This lecture: UC 1

▶ Next lecture: UC 2
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Cryptography

▶ “secret writing”
▶ Old and new

▶ As early as 2000 B.C. in ancient Egypt
▶ Turing vs. Enigma machine in World War II
▶ Academic research and commercial adoption since 1970’s

▶ Essential for computer cyber security.
▶ Provide good examples for us to learn to identify threats and to

design defense mechanisms in a formal (mathematical) setting.
▶ Many security constructs are impossible without advances in

cryptography.
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Basic Model

(Paar and Pelzl)
▶ Recall our example of king and general.
▶ Alice and Bob

▶ For “good” parties like the king and the general.
▶ Instead of using meaningless symbols like A and B.

▶ The opponent (attacker) Oscar who is “bad”.

▶ The message x passing through the “insecure” channel for
communication.

▶ What do “good”, “insecure”, and “bad” mean?
▶ If we need to discuss security requirements like confidentiality

and integrity?
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Assumptions

▶ “Good” parties
▶ We trust that Alice and Bob will faithfully follow the

mechanism that we will design later.
▶ If they use computers, we trust the computers to faithfully

follow the mechanism.

▶ “Insecure” channel
▶ We treat the channel as a blackbox that receives messages

from Alice and sends messages to Bob.
▶ We leave what is allowed and what is not allowed to happen in

the channel to the “bad” opponent.

▶ “Bad” opponent, i.e. adversary
▶ Address security requirements by defining behavior of

attackers.
▶ Passive adversary: break confidentiality by reading messages

passing through the channel – but cannot do anything else like
modifying messages or inserting messages.

▶ And many other types of adversaries.
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Symmetric Cryptography

(Paar and Pelzl)
▶ A mechanism for confidentiality

▶ plaintext x , ciphertext y , and the key k

▶ e(): encryption such that y = ek(x)

▶ d(): decryption such that x = dk(y)
▶ “Symmetric”: both Alice and Bob know k.

▶ If you feel uncomfortable with the secure channel to establish
k between Alice and Bob, you are not alone – this motivated
the discovery of public-key cryptography.
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Assumptions

▶ Adversaries know y .
▶ No “security by obscurity”

▶ We should assume adversaries to know e() and d().
▶ Attackers will eventually know e() and d().
▶ History showed that to break the system from there was easy.
▶ No matter there is additional secret (Enigma) or not

(DVD/CSS).

▶ Adversaries cannot know k directly.
▶ But might be able to derive k from y , e(), and d().
▶ Plus any other information explicitly allowed.

10/26 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT



Problem Formulation

Given y , e(), and d(), find x and k such that:

y = ek(x), and x = dk(y).

▶ Use mathematics to model how passive adverseries attack
symmetric cryptography.

▶ Brute-force attack
▶ Key space K : the set of all possible keys
▶ For each k ∈ K , compute x = dk(y) and report k if x is

meaningful.
▶ What does “meaningful” mean?
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Simple Symmetric Encryption: The Substitution Cipher

▶ For illustration purposes only.

▶ x consist of upper case letters and spaces.
▶ k is a mapping from upper case letters to lower case letters.

▶ E.g. A → k , B → d , C → w , . . .

▶ e() uses k to substitute upper case letters in x .
▶ E.g. for x = ABBA C we have y = kddk w .

▶ k needs to be one-to-one for d() to work properly.

▶ Can we apply brute-force attacks to find k and x for the
ciphertext y below?

iq ifcc vqqr fb rdq vfllcq na rdq cfjwhwz hr bnnb

hcc hwwhbsqvqbre hwq vhlq
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Practical Limitation of Computational Power

▶ There are 26 ∗ 25 ∗ · · · ∗ 1 ≈ 288 possible keys for the passive
adversary to try using brute-force attack.
▶ Need a few billions years if a computer can try a key in a

nanosecond.

▶ We claim the substitution cipher is computationally secure
against brute-force attack.
▶ Assume the passive adversary is computationally bounded

instead of unbounded.

▶ Can a computationally bounded passive adversary apply
another attack to break the substitution cipher?

▶ Is there a cipher secure against brute-force attacks for
computationally unbounded passive adversaries?
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Cryptanalysis

iq ifcc vqqr fb rdq vfllcq na rdq

cfjwhwz hr bnnb hcc hwwhbsqvqbre hwq vhlq

▶ Instead of treating the substitution cipher as a blackbox,
adversaries may exploit how it encrypts messages.

▶ Spaces are preserved so adversaries can identify words.
▶ In particular those short words.
▶ Any good guess of what is rdq?

▶ Adversaries may work with a key known only partially.
▶ What is hr if adversaries can decrypt rdq?
▶ And then hcc and hwq? And then everything?
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Cryptanalysis (Cont.)

iqifccvqqrfbrdqvfllcqnardqcfjwh

wzhrbnnbhcchwwhbsqvqbrehwqvhlq

What if we preprocess the plaintext to remove spaces?

▶ With some effort, we can still read the message.

▶ Adversaries cannot decrypt by identifying short words first.
▶ However, as the same upper case letter maps to the same

lower case letter, the letter frequencies will match those for
English.
▶ E.g. E, T, A are most probable.

▶ Adversaries may still obtain x without first knowing k.
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Lesson Learned

▶ Key space need to be large enough to resist brute-force
attacks for computationally bounded adversaries.

▶ Good ciphers should not allow to decrypt partially with
partially known keys.

▶ Good ciphers should hide the statistical properties of the
encrypted plaintext.
▶ Preprocess the plaintext to remove any statistical properties

will further help.

▶ Don’t design ciphers by yourself and expect them to be good!

16/26 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT



Other Attacks

▶ Implementation Attacks
▶ Even if a mechanism is secure, implementations may leak x

and k through a side-channel.
▶ Usually associated with signals in the physical world.

▶ Social Engineering Attacks
▶ As utimately human beings manage the secret key, adversaries

may exploit our weakness to obtain the key.
▶ Via violence, deception, system/software bugs etc.

▶ We will leave both to the later half of the semester.
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Retrospection

▶ Without computers, ancient ciphers are limited to simple rules
that can be followed by human beings.
▶ Usually simplified substitution ciphers.
▶ Can be described by mathematics, especially those dealing

with arithmetics, known today as elementary number theory.

▶ With a computer, it turned out elementary number theory still
plays a very important role in designing cryptosystem with
surprising properties.

▶ Let’s start with modular arithmetic.
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Integer Division with Remainder

Given a (dividend) and m > 0 (divisor), there exist unique q
(quotiant) and r (remainder) such that:

a = qm + r , and 0 ≤ r < m,

where a,m, q, r are all integers.
▶ m divides a iff (if and only if) r = 0, written as m|a.

▶ In such case, we also call m a factor, or a divisor of a.
▶ Obviously 1|a and a|a. a is a prime number iff a has no other

divisor.

▶ We use a mod m to emphasize the process to compute r from
a and m.
▶ We don’t care about the quotiant most of the time.
▶ Most programming languages use %. But be aware of the

difference when a is negative.
▶ Anyway, cryptography nowadays uses extremely large integers

so we always need to rely on library functions.
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Practices

▶ 13 mod 5

▶ 17 mod 5

▶ (13 ∗ 17) mod 5

▶ ((13 mod 5) ∗ 17) mod 5

▶ (13 ∗ (17 mod 5)) mod 5

▶ ((13 mod 5) ∗ (17 mod 5)) mod 5
▶ The last 4 equations give the same result.

▶ There is a better way to reason with remainders without
computing them everytime.
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Congruence

If a mod m and b mod m is the same, we write:

a ≡ b (mod m).

▶ That is equivalent to m|a− b.
▶ In comparison to the textbook, we use the extra parenthesis

around (mod m) to emphasize ≡ works like =.
▶ Addition, subtraction, and multiplication just work.
▶ E.g. since 13 ≡ 3 (mod 5) and 17 ≡ 2 (mod 5), we have

13 ∗ 17 ≡ 3 ∗ 2 ≡ 6 ≡ 1 (mod 5).

▶ This kind of structures is called a ring.
▶ What about divisions?
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Algebra

▶ What is 1
2?

▶ 0.5. Not an integer.
▶ Or we can use algebra: 1

2 is a solution to 2x = 1.

▶ If this doesn’t make sense, then think of
√
2.

▶ Now consider congruence and treat ≡ as =.
▶ Does 2x ≡ 1 (mod 5) have an integer solution?
▶ Yes, x ≡ 3 (mod 5), infinite many integers.

▶ When does ax ≡ b (mod m) have solutions?
▶ Assume a ̸≡ 0 (mod m).
▶ If m is a prime number, then always there are solutions.

▶ This is an example of finite field (a.k.a. Galois field).

▶ What about 4x ≡ 1 (mod 6)? 4x ≡ 2 (mod 6)?
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More on Algebra

Solve the following for the unknown integer x .
▶ Linear equation

ax ≡ b (mod m).

▶ System of congruences

x ≡ a1 (mod m1),

x ≡ a2 (mod m2),

. . .,

x ≡ an (mod mn).

▶ n-th root
xn ≡ a (mod m).

▶ Discrete logarithm

ax ≡ b (mod m).

▶ They serve as the foundation for the current practice of
public-key cryptography.
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Historical Ciphers

▶ Message encoding
▶ Upper case letters only, each as an integer between 0 and 25.
▶ Plaintext and ciphertext are both strings of integers.

▶ Caesar Cipher, a.k.a. Shift Cipher
▶ Choose an integer key k
▶ e(): substitute each plaintext letter x with x + k mod 26.
▶ d(): substitute each ciphertext letter y with y − k mod 26.

▶ Affine Cipher
▶ Choose a pair of integers (a, b) as the key.

▶ Make sure there is an integer c such that ac ≡ 1 (mod 26),
e.g. a = 3 and c = 9.

▶ e(): substitute each plaintext letter x with ax + b mod 26.
▶ d(): substitute each ciphertext letter y with c(y − b) mod 26.

▶ The key space is too small to even resist brute-force attack.
▶ For Caesar cipher, any k ′ ≡ k (mod 26) will work –

adversaries only need to try 26 keys.
▶ For affine cipher, at most 25 ∗ 26 keys.
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▶ The midterm exam will cover most of them.
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