ECE 443/518 – Computer Cyber Security Lecture 02 Cryptography

Professor Jia Wang Department of Electrical and Computer Engineering Illinois Institute of Technology

August 21, 2024

[Symmetric Cryptography](#page-7-0)

[Modular Arithmetic](#page-17-0)

- ▶ This lecture: UC 1
- ▶ Next lecture: UC 2

[Symmetric Cryptography](#page-7-0)

[Modular Arithmetic](#page-17-0)

▶ "secret writing"

- ▶ Old and new
	- ▶ As early as 2000 B.C. in ancient Egypt
	- ▶ Turing vs. Enigma machine in World War II
	- ▶ Academic research and commercial adoption since 1970's
- \blacktriangleright Essential for computer cyber security.
	- ▶ Provide good examples for us to learn to identify threats and to design defense mechanisms in a formal (mathematical) setting.
	- ▶ Many security constructs are impossible without advances in cryptography.

Basic Model

Fig. 1.4 Communication over an insecure channel

(Paar and Pelzl)

- ▶ Recall our example of king and general.
- ▶ Alice and Bob
	- \blacktriangleright For "good" parties like the king and the general.
	- ▶ Instead of using meaningless symbols like A and B.
- ▶ The opponent (attacker) Oscar who is "bad".
- \blacktriangleright The message x passing through the "insecure" channel for communication.
- ▶ What do "good", "insecure", and "bad" mean?
	- ▶ If we need to discuss security requirements like confidentiality and integrity?

Assumptions

- ▶ "Good" parties
	- ▶ We trust that Alice and Bob will faithfully follow the mechanism that we will design later.
	- ▶ If they use computers, we trust the computers to faithfully follow the mechanism.
- ▶ "Insecure" channel
	- \triangleright We treat the channel as a blackbox that receives messages from Alice and sends messages to Bob.
	- ▶ We leave what is allowed and what is not allowed to happen in the channel to the "bad" opponent.
- ▶ "Bad" opponent, i.e. adversary
	- ▶ Address security requirements by defining behavior of attackers.
	- ▶ Passive adversary: break confidentiality by reading messages passing through the channel – but cannot do anything else like modifying messages or inserting messages.
	- ▶ And many other types of adversaries.

[Symmetric Cryptography](#page-7-0)

[Modular Arithmetic](#page-17-0)

Symmetric Cryptography

Fig. 1.5 Symmetric-key cryptosystem

 \blacktriangleright A mechanism for confidentiality

- \blacktriangleright plaintext x, ciphertext y, and the key k
- \blacktriangleright e(): encryption such that $y = e_k(x)$
- \blacktriangleright d(): decryption such that $x = d_k(y)$
- \blacktriangleright "Symmetric": both Alice and Bob know k .
	- ▶ If you feel uncomfortable with the secure channel to establish k between Alice and Bob, you are not alone – this motivated the discovery of public-key cryptography.

9/26 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

(Paar and Pelzl)

Assumptions

 \blacktriangleright Adversaries know y.

- ▶ No "security by obscurity"
	- \triangleright We should assume adversaries to know $e()$ and $d()$.
	- Attackers will eventually know $e()$ and $d()$.
	- ▶ History showed that to break the system from there was easy.
	- \triangleright No matter there is additional secret (Enigma) or not (DVD/CSS).
- \blacktriangleright Adversaries cannot know k directly.
	- But might be able to derive k from y, $e()$, and $d()$.
	- ▶ Plus any other information explicitly allowed.

Given y, $e()$, and $d()$, find x and k such that:

$$
y=e_k(x), \text{ and } x=d_k(y).
$$

- ▶ Use mathematics to model how passive adverseries attack symmetric cryptography.
- ▶ Brute-force attack
	- ▶ Key space K : the set of all possible keys
	- ▶ For each $k \in K$, compute $x = d_k(y)$ and report k if x is meaningful.
	- ▶ What does "meaningful" mean?

Simple Symmetric Encryption: The Substitution Cipher

- ▶ For illustration purposes only.
- \triangleright x consist of upper case letters and spaces.
- \triangleright k is a mapping from upper case letters to lower case letters.
	- \blacktriangleright E.g. $A \rightarrow k$, $B \rightarrow d$, $C \rightarrow w$, ...
- \blacktriangleright e() uses k to substitute upper case letters in x.

E.g. for $x = ABBA$ C we have $y = kddk$ w.

- \triangleright k needs to be one-to-one for $d()$ to work properly.
- \triangleright Can we apply brute-force attacks to find k and x for the ciphertext y below?

iq ifcc vqqr fb rdq vfllcq na rdq cfjwhwz hr bnnb hcc hwwhbsqvqbre hwq vhlq

Practical Limitation of Computational Power

- ▶ There are $26 * 25 * \cdots * 1 \approx 2^{88}$ possible keys for the passive adversary to try using brute-force attack.
	- ▶ Need a few billions years if a computer can try a key in a nanosecond.
- \triangleright We claim the substitution cipher is computationally secure against brute-force attack.
	- ▶ Assume the passive adversary is computationally bounded instead of unbounded.
- ▶ Can a computationally bounded passive adversary apply another attack to break the substitution cipher?
- \blacktriangleright Is there a cipher secure against brute-force attacks for computationally unbounded passive adversaries?

iq ifcc vqqr fb rdq vfllcq na rdq

cfjwhwz hr bnnb hcc hwwhbsqvqbre hwq vhlq

- \blacktriangleright Instead of treating the substitution cipher as a blackbox, adversaries may exploit how it encrypts messages.
- ▶ Spaces are preserved so adversaries can identify words.
	- \blacktriangleright In particular those short words.
	- ▶ Any good guess of what is rdq?
- ▶ Adversaries may work with a key known only partially.
	- ▶ What is hr if adversaries can decrypt rdq?
	- ▶ And then hcc and hwq? And then everything?

iqifccvqqrfbrdqvfllcqnardqcfjwh wzhrbnnbhcchwwhbsqvqbrehwqvhlq

What if we preprocess the plaintext to remove spaces?

- \triangleright With some effort, we can still read the message.
- ▶ Adversaries cannot decrypt by identifying short words first.
- ▶ However, as the same upper case letter maps to the same lower case letter, the letter frequencies will match those for English.

 \blacktriangleright E.g. E, T, A are most probable.

 \blacktriangleright Adversaries may still obtain x without first knowing k.

- ▶ Key space need to be large enough to resist brute-force attacks for computationally bounded adversaries.
- ▶ Good ciphers should not allow to decrypt partially with partially known keys.
- \triangleright Good ciphers should hide the statistical properties of the encrypted plaintext.
	- ▶ Preprocess the plaintext to remove any statistical properties will further help.
- ▶ Don't design ciphers by yourself and expect them to be good!

▶ Implementation Attacks

- \blacktriangleright Even if a mechanism is secure, implementations may leak x and k through a side-channel.
- \triangleright Usually associated with signals in the physical world.
- ▶ Social Engineering Attacks
	- ▶ As utimately human beings manage the secret key, adversaries may exploit our weakness to obtain the key.
	- \triangleright Via violence, deception, system/software bugs etc.
- ▶ We will leave both to the later half of the semester.

[Symmetric Cryptography](#page-7-0)

[Modular Arithmetic](#page-17-0)

- ▶ Without computers, ancient ciphers are limited to simple rules that can be followed by human beings.
	- \blacktriangleright Usually simplified substitution ciphers.
	- \triangleright Can be described by mathematics, especially those dealing with arithmetics, known today as elementary number theory.
- ▶ With a computer, it turned out elementary number theory still plays a very important role in designing cryptosystem with surprising properties.
- \blacktriangleright Let's start with modular arithmetic.

Integer Division with Remainder

Given a (dividend) and $m > 0$ (divisor), there exist unique q (quotiant) and r (remainder) such that:

 $a = qm + r$, and $0 \le r \le m$,

where a, m, q, r are all integers.

- ightharpoonup m divides a iff (if and only if) $r = 0$, written as $m|a$.
	- \blacktriangleright In such case, we also call m a factor, or a divisor of a.
	- ▶ Obviously $1|a$ and $a|a$. a is a prime number iff a has no other divisor.
- \triangleright We use a mod m to emphasize the process to compute r from a and m.
	- \triangleright We don't care about the quotiant most of the time.
	- \blacktriangleright Most programming languages use %. But be aware of the difference when a is negative.
	- ▶ Anyway, cryptography nowadays uses extremely large integers so we always need to rely on library functions.

Practices

- \blacktriangleright 13 mod 5
- \blacktriangleright 17 mod 5
- \blacktriangleright (13 \ast 17) mod 5
- ▶ $((13 \mod 5) * 17) \mod 5$
- ▶ (13 ∗ (17 mod 5)) mod 5
- ▶ ((13 mod 5) ∗ (17 mod 5)) mod 5
- \blacktriangleright The last 4 equations give the same result.
	- ▶ There is a better way to reason with remainders without computing them everytime.

Congruence

If a mod m and b mod m is the same, we write:

 $a \equiv b \pmod{m}$.

- **►** That is equivalent to $m|a b$.
- \blacktriangleright In comparison to the textbook, we use the extra parenthesis around (mod m) to emphasize \equiv works like $=$.

 \blacktriangleright Addition, subtraction, and multiplication just work.

▶ E.g. since $13 \equiv 3 \pmod{5}$ and $17 \equiv 2 \pmod{5}$, we have

$$
13 * 17 \equiv 3 * 2 \equiv 6 \equiv 1 \pmod{5}
$$
.

 \blacktriangleright This kind of structures is called a ring.

▶ What about divisions?

Algebra

- \blacktriangleright What is $\frac{1}{2}$?
	- ▶ 0.5. Not an integer.
	- ▶ Or we can use <u>algebra</u>: $\frac{1}{2}$ is a solution to 2*x* = 1.
		- **► If this doesn't make sense, then think of** $\sqrt{2}$ **.**
- ▶ Now consider congruence and treat \equiv as $=$.
	- ▶ Does $2x \equiv 1 \pmod{5}$ have an integer solution?
	- ▶ Yes, $x \equiv 3 \pmod{5}$, infinite many integers.
- ▶ When does $ax \equiv b \pmod{m}$ have solutions?
	- ▶ Assume $a \not\equiv 0 \pmod{m}$.
	- \blacktriangleright If m is a prime number, then always there are solutions.
		- ▶ This is an example of finite field (a.k.a. Galois field).
	- ▶ What about $4x \equiv 1 \pmod{6}$? $4x \equiv 2 \pmod{6}$?

More on Algebra

Solve the following for the unknown integer x.

▶ Linear equation

 $ax \equiv b \pmod{m}$.

▶ System of congruences

$$
x \equiv a_1 \pmod{m_1},
$$

\n
$$
x \equiv a_2 \pmod{m_2},
$$

\n...
\n
$$
x \equiv a_n \pmod{m_n}.
$$

 \blacktriangleright n-th root

$$
x^n \equiv a \pmod{m}.
$$

▶ Discrete logarithm

$$
a^x \equiv b \pmod{m}.
$$

▶ They serve as the foundation for the current practice of public-key cryptography.

Historical Ciphers

▶ Message encoding

- ▶ Upper case letters only, each as an integer between 0 and 25.
- ▶ Plaintext and ciphertext are both strings of integers.
- ▶ Caesar Cipher, a.k.a. Shift Cipher
	- \blacktriangleright Choose an integer key k
	- e(): substitute each plaintext letter x with $x + k$ mod 26.
	- ▶ d(): substitute each ciphertext letter y with $y k$ mod 26.
- ▶ Affine Cipher
	- ▶ Choose a pair of integers (a, b) as the key.
		- ▶ Make sure there is an integer c such that $ac \equiv 1 \pmod{26}$. e.g. $a = 3$ and $c = 9$.
	- e(): substitute each plaintext letter x with $ax + b$ mod 26.
	- \blacktriangleright d(): substitute each ciphertext letter y with $c(y b)$ mod 26.
- \blacktriangleright The key space is too small to even resist brute-force attack.
	- ▶ For Caesar cipher, any $k' \equiv k \pmod{26}$ will work adversaries only need to try 26 keys.
	- ▶ For affine cipher, at most 25 $*$ 26 keys.
- 25/26 ECE 443/518 Computer Cyber Security, Dept. of ECE, IIT

Introductory Cryptography Readmap

▶ The midterm exam will cover most of them.