Homework 03 ECE 443/518, Fall 2024

Due Date: 11/10, by the end of the day (Chicago time)

Let's work on the garbled circuit between Alice and Bob who want to compute f = NAND(a, b).

- 1. (1 point) Suppose 0 and 1 on each wire is encrypted into a 5-bit number (0 to 31). Alice chooses $A_0 = 7$, $A_1 = 17$, $B_0 = 19$, $B_1 = 3$, and $O_0 = 18$, $O_1 = 6$. What are S_A and S_B ?
- 2. (1 point) For the encryption function $e_{k_1||k_2}(x) = (k_1 + k_2 + x) \mod 32$, show how Alice garbles the circuit. Suppose Alice chooses a = 1. What Alice should send to Bob as her input?
- 3. (1 point) Suppose Bob chooses b = 0. Show how Bob encrypts his input with Alice's help using OT. Assume Alice's RSA public key to be (n = 35, e = 5).
- 4. (1 point) Show how Bob computes with the garbled circuit and the encrypted inputs, and then communicates with Alice to determine f.
- 5. (1 point) Show that Bob cannot decide Alice's choice of a (assuming OT only reveals B_0 but no additional information). As a hint, is it possible for Alice to choose $A_0 = 17$, $A_1 = 7$ while sending Bob exactly the same garbled circuit and inputs?