Homework 03 Solutions ECE 443/518, Fall 2024

Let's work on the garbled circuit between Alice and Bob who want to compute f = NAND(a, b).

1. (1 point) Suppose 0 and 1 on each wire is encrypted into a 5-bit number (0 to 31). Alice chooses $A_0 = 7$, $A_1 = 17$, $B_0 = 19$, $B_1 = 3$, and $O_0 = 18$, $O_1 = 6$. What are S_A and S_B ?

Anwser:

$$A_0 = 7 = (00111)_2, A_1 = 17 = (10001)_2$$
$$B_0 = 19 = (10011)_2, B_1 = 3 = (00011)_2$$
So $S_A = A_0(highest \ bit) = 0$ and $S_B = B_0(highest \ bit) = 1$.

2. (1 point) For the encryption function $e_{k_1||k_2}(x) = (k_1 + k_2 + x) \mod 32$, show how Alice garbles the circuit. Suppose Alice chooses a = 1. What Alice should send to Bob as her input?

Answer:

$$e_{A_0,B_0}(O_1) = (7+19+6) \mod 32 = 0$$

 $e_{A_0,B_1}(O_1) = (7+3+6) \mod 32 = 16$
 $e_{A_1,B_0}(O_1) = (17+19+6) \mod 32 = 10$
 $e_{A_1,B_1}(O_0) = (17+3+18) \mod 32 = 6$

Now we need to reorder them according to S_A and S_B , so Alice should send the reordered truth table $(S_A = 0, S_B = 0, 16)$, $(S_A = 0, S_B = 1, 0)$, $(S_A = 1, S_B = 0, 6)$, $(S_A = 1, S_B = 1, 10)$, or simply (16, 0, 6, 10).

For a = 1, Alice should send Bob 17.

3. (1 point) Suppose Bob chooses b = 0. Show how Bob encrypts his input with Alice's help using OT. Assume Alice's RSA public key to be (n = 35, e = 5). Answer: First for RSA $k_{pub} = (n = 35, e = 5)$, Alice should compute $k_{pr} = (p = 5, q = 7, d = 5)$. Then OT goes as follows:

- Alice chooses two random numbers, say $x_0 = 1$ and $x_1 = 1$, and sends them to Bob.
- Bob picks $x_0 = 1$ since b = 0 and then chooses a random number, say y = 3. Bob computes v as follows and sends it to Alice.

$$v = (y^e + x_0) \mod n = (3^5 + 1) \mod 35 = 34$$

– Alice computes B'_0 and B'_1 accordingly and sends them to Bob.

$$B'_0 = B_0 + ((v - x_0)^d \mod n) = 19 + (33^5 \mod 35) = 22$$
$$B'_1 = B_1 + ((v - x_1)^d \mod n) = 3 + (32^5 \mod 35) = 5$$

– Bob uses B'_0 to recover B_0

$$B_0 = B'_0 - y = 22 - 3 = 19$$

4. (1 point) Show how Bob computes with the garbled circuit and the encrypted inputs, and then communicates with Alice to determine f.

Answer: Now Bob knows A = 17 and B = 19, both with highest bit of 1, so he will use the last number among (16, 0, 6, 10) to calculate O,

$$O = d_{17||19}(10) = 10 - 17 - 19 \mod 32 = 6$$

Bob sends O = 6 to Alice and then Alice reveals the output to be 1.

5. (1 point) Show that Bob cannot decide Alice's choice of a (assuming OT only reveals B_0 but no additional information). As a hint, is it possible for Alice to choose $A_0 = 17$, $A_1 = 7$ while sending Bob exactly the same garbled circuit and inputs?

Answer: In such a case Alice will also have to choose $B_0 = 19$ as we want Alice to send Bob exactly same group of number except for those random numbers in OT. Therefore, now $S_A = S_B = 1$ and Alice could choose B_0 , O_0 , and O_1 differently by solving the equations below, assuming the same reordered truth table of (16, 0, 6, 10)

> $e_{A_0,B_0}(O_1) = (17 + 19 + O_1) \mod 32 = 10$ $e_{A_0,B_1}(O_1) = (17 + B_1 + O_1) \mod 32 = 6$ $e_{A_1,B_0}(O_1) = (7 + 19 + O_1) \mod 32 = 0$ $e_{A_1,B_1}(O_0) = (7 + B_1 + O_0) \mod 32 = 16$

We have a solution $O_1 = 6$, $B_1 = 15$, $O_0 = 26$.