help runpf runpf Runs a power flow. [RESULTS, SUCCESS] = runpf(CASEDATA, MPOPT, FNAME, SOLVEDCASE) Runs a power flow (full AC Newton's method by default), optionally returning a RESULTS struct and SUCCESS flag. Inputs (all are optional): CASEDATA : either a MATPOWER case struct or a string containing the name of the file with the case data (default is 'case9') (see also CASEFORMAT and LOADCASE) MPOPT : MATPOWER options struct to override default options can be used to specify the solution algorithm, output options termination tolerances, and more (see also MPOPTION). FNAME : name of a file to which the pretty-printed output will be appended SOLVEDCASE : name of file to which the solved case will be saved in MATPOWER case format (M-file will be assumed unless the specified name ends with '.mat') Outputs (all are optional): RESULTS : results struct, with the following fields: (all fields from the input MATPOWER case, i.e. bus, branch, gen, etc., but with solved voltages, power flows, etc.) order - info used in external <-> internal data conversion et - elapsed time in seconds success - success flag, 1 = succeeded, 0 = failed SUCCESS : the success flag can additionally be returned as a second output argument Calling syntax options: results = runpf; results = runpf(casedata); results = runpf(casedata, mpopt); results = runpf(casedata, mpopt, fname); results = runpf(casedata, mpopt, fname, solvedcase); [results, success] = runpf(...); Alternatively, for compatibility with previous versions of MATPOWER, some of the results can be returned as individual output arguments: [baseMVA, bus, gen, branch, success, et] = runpf(...); If the pf.enforce_q_lims option is set to true (default is false) then, if any generator reactive power limit is violated after running the AC power flow, the corresponding bus is converted to a PQ bus, with Qg at the limit, and the case is re-run. The voltage magnitude at the bus will deviate from the specified value in order to satisfy the reactive power limit. If the reference bus is converted to PQ, the first remaining PV bus will be used as the slack bus for the next iteration. This may result in the real power output at this generator being slightly off from the specified values. Examples: results = runpf('case30'); results = runpf('case30', mpoption('pf.enforce_q_lims', 1)); See also rundcpf. runpf('esca64_n') MATPOWER Version 6.0, 16-Dec-2016 -- AC Power Flow (Newton) Newton's method power flow converged in 4 iterations. Converged in 0.14 seconds ================================================================================ | System Summary | ================================================================================ How many? How much? P (MW) Q (MVAr) --------------------- ------------------- ------------- ----------------- Buses 64 Total Gen Capacity 6200.0 -2750.0 to 5300.0 Generators 11 On-line Capacity 6200.0 -2750.0 to 5300.0 Committed Gens 11 Generation (actual) 4181.0 631.4 Loads 28 Load 4144.9 1152.9 Fixed 28 Fixed 4144.9 1152.9 Dispatchable 0 Dispatchable -0.0 of -0.0 -0.0 Shunts 6 Shunt (inj) -0.0 274.9 Branches 78 Losses (I^2 * Z) 36.06 699.06 Transformers 38 Branch Charging (inj) - 945.7 Inter-ties 7 Total Inter-tie Flow 1951.5 257.6 Areas 3 Minimum Maximum ------------------------- -------------------------------- Voltage Magnitude 0.900 p.u. @ bus 31 1.078 p.u. @ bus 46 Voltage Angle -15.50 deg @ bus 25 2.15 deg @ bus 57 P Losses (I^2*R) - 5.84 MW @ line 54-56 Q Losses (I^2*X) - 46.27 MVAr @ line 28-54 ================================================================================ | Bus Data | ================================================================================ Bus Voltage Generation Load # Mag(pu) Ang(deg) P (MW) Q (MVAr) P (MW) Q (MVAr) ----- ------- -------- -------- -------- -------- -------- 1 1.007 -4.582 - - - - 2 1.007 -4.563 - - - - 3 1.000 -3.975 - - 389.04 68.62 4 1.010 -1.961 325.80 13.13 - - 5 1.010 0.756 465.40 52.72 - - 6 1.018 -3.677 - - - - 7 1.018 -3.680 - - - - 8 1.000 0.059 232.70 34.24 6.34 4.22 9 1.000 0.059 232.70 34.24 6.34 4.22 10 1.012 -6.789 - - - - 11 1.018 -7.427 - - 87.00 41.80 12 1.030 -7.389 - - 20.72 3.40 13 1.016 -7.274 - - - - 14 1.016 -3.945 - - 101.74 37.92 15 1.025 0.924 325.80 40.84 - - 16 1.022 -9.359 - - - - 17 1.025 -9.406 - - 184.66 35.08 18 1.017 -9.739 - - - - 19 0.959 -11.595 - - 328.42 88.26 20 1.012 -9.004 - - 384.98 37.72 21 1.018 -9.303 - - - - 22 1.019 -9.856 - - - - 23 0.962 -11.746 - - - - 24 0.919 -13.692 - - 158.76 95.44 25 0.935 -15.496 - - 209.50 81.06 26 0.943 -14.172 - - 5.70 2.32 27 0.944 -14.135 - - - - 28 1.036 -8.181 - - 376.42 2.84 29 1.007 -9.306 - - - - 30 0.953 -11.501 - - - - 31 0.900 -14.222 - - 209.62 132.98 32 0.945 -13.758 - - 86.88 10.04 33 0.945 -13.613 - - 64.16 15.10 34 0.946 -13.202 - - - - 35 1.070 -6.651 - - - - 36 1.050 -1.563 372.30 228.44 - - 37 1.066 -7.055 - - - - 38 1.065 -7.491 - - - - 39 1.030 -8.674 - - 133.66 48.04 40 1.067 -6.098 - - - - 41 1.060 -6.376 - - - - 42 1.040 -6.269 - - 4.86 50.30 43 1.049 -8.446 - - - - 44 1.038 -10.077 - - 159.98 47.10 45 1.042 -10.226 - - 174.24 26.14 46 1.078 -5.851 - - - - 47 1.049 -7.804 - - - - 48 1.065 -7.608 - - - - 49 1.059 -8.825 - - 129.16 27.56 50 1.060 -8.714 - - 117.48 24.14 51 1.066 -5.790 - - - - 52 1.015 -1.039 418.80 112.64 - - 53 1.042 -3.550 - - 200.00 62.70 54 1.042 -3.565 - - - - 55 1.025 1.551 511.90 70.32 - - 56 1.056 -1.990 - - -107.66 73.70 57 1.020 2.149 325.80 -41.23 - - 58 1.065 -4.585 - - 454.32 102.86 59 1.050 0.000* 527.67 73.96 - - 60 1.072 -3.216 - - 84.76 11.34 61 1.064 -4.275 - - 57.20 6.98 62 1.073 -1.455 - - 116.66 11.04 63 1.050 2.137 442.10 12.05 - - 64 1.068 -4.250 - - - - -------- -------- -------- -------- Total: 4180.97 631.35 4144.91 1152.91 ================================================================================ | Branch Data | ================================================================================ Brnch From To From Bus Injection To Bus Injection Loss (I^2 * Z) # Bus Bus P (MW) Q (MVAr) P (MW) Q (MVAr) P (MW) Q (MVAr) ----- ----- ----- -------- -------- -------- -------- -------- -------- 1 1 20 199.72 -28.78 -198.45 28.81 1.273 15.51 2 1 20 199.72 -28.78 -198.45 28.81 1.273 15.51 3 6 10 401.64 20.42 -400.39 -24.98 1.253 21.93 4 7 14 51.08 9.78 -51.06 -28.65 0.017 0.28 5 10 20 292.60 -22.49 -291.93 7.67 0.669 11.30 6 14 29 274.61 3.66 -272.99 -14.88 1.617 25.73 7 16 21 -8.62 39.20 8.63 -52.75 0.015 0.17 8 17 28 -176.04 -74.43 176.41 56.13 0.366 4.42 9 18 61 -311.95 -121.40 315.23 101.10 3.288 34.94 10 18 21 -45.64 -17.34 45.67 -15.65 0.026 0.35 11 19 30 -5.85 95.73 5.97 -99.63 0.117 0.71 12 19 23 34.45 -58.61 -34.41 55.03 0.044 0.26 13 20 29 94.89 73.31 -94.84 -79.38 0.044 0.86 14 20 21 54.36 -81.47 -54.30 68.41 0.058 0.74 15 20 22 154.60 -94.85 -154.32 80.11 0.275 2.88 16 22 47 -186.35 -141.50 187.22 112.80 0.863 10.40 17 28 54 -572.55 16.18 576.53 2.35 3.983 46.27 18 28 43 19.72 -75.14 -19.67 52.01 0.053 0.87 19 35 37 318.52 116.50 -318.32 -118.77 0.202 2.63 20 35 38 184.09 31.63 -183.90 -41.66 0.185 2.84 21 35 40 -130.31 37.05 130.42 -51.55 0.116 1.36 22 37 43 220.36 127.06 -219.89 -134.53 0.470 7.51 23 37 48 97.96 -8.29 -97.89 -7.57 0.068 0.95 24 38 48 50.13 -9.56 -50.12 0.81 0.009 0.10 25 40 51 -138.81 34.08 138.89 -41.60 0.073 0.78 26 41 51 -279.59 -122.46 279.91 117.73 0.328 3.53 27 41 47 283.09 89.04 -282.37 -100.08 0.720 8.08 28 43 47 -95.09 -1.39 95.16 -12.72 0.066 1.07 29 46 58 -99.04 -9.99 99.15 -124.89 0.115 2.88 30 46 48 99.04 9.99 -98.82 -50.24 0.215 3.39 31 53 64 27.27 -106.39 -27.09 30.61 0.175 2.05 32 54 56 -291.89 65.58 297.74 -74.47 5.842 7.18 33 56 61 135.10 -64.51 -134.54 12.56 0.561 5.66 34 58 64 -27.08 -54.52 27.09 -30.61 0.008 0.19 35 1 2 -325.07 1.78 325.07 -1.67 0.000 0.10 36 7 6 -51.08 -9.78 51.08 9.78 -0.000 0.00 37 54 53 -284.63 -67.93 284.63 68.01 0.000 0.08 38 1 3 -74.37 55.78 74.43 -54.61 0.060 1.18 39 3 5 -463.46 -14.01 465.40 52.72 1.935 38.71 40 2 4 -325.07 1.67 325.80 13.13 0.730 14.80 41 6 8 -226.36 -15.10 226.36 30.02 0.000 14.91 42 6 9 -226.36 -15.10 226.36 30.02 0.000 14.91 43 11 10 -59.47 -67.59 59.53 69.20 0.057 1.60 44 10 13 48.26 -21.73 -48.25 22.21 0.014 0.49 45 11 13 -27.53 25.79 27.53 -25.66 0.000 0.14 46 12 13 -20.72 -3.40 20.72 3.44 0.000 0.04 47 14 15 -325.29 -12.93 325.80 40.84 0.513 27.91 48 17 16 -8.62 39.35 8.62 -39.20 0.000 0.15 49 19 18 -178.51 -62.69 178.79 69.37 0.284 6.68 50 19 18 -178.51 -62.69 178.79 69.37 0.284 6.68 51 23 22 -170.11 -50.39 170.34 56.63 0.233 6.24 52 23 22 -170.11 -50.39 170.34 56.63 0.233 6.24 53 24 23 -158.76 -95.44 159.11 103.17 0.349 7.73 54 23 27 215.51 100.01 -215.20 -89.16 0.305 10.85 55 25 27 -209.50 -81.06 209.50 86.84 0.006 5.78 56 26 27 -5.70 -2.32 5.70 2.32 0.000 0.00 57 30 29 -183.63 -39.63 183.92 47.13 0.284 7.50 58 30 29 -183.63 -39.63 183.92 47.13 0.284 7.50 59 31 30 -209.62 -132.98 210.13 147.74 0.509 14.76 60 30 34 151.17 31.16 -151.04 -26.48 0.131 4.67 61 32 34 -86.88 -10.04 86.88 10.90 0.001 0.86 62 33 34 -64.16 -15.10 64.16 15.59 0.000 0.49 63 35 36 -372.30 -185.17 372.30 228.44 0.000 43.26 64 39 38 -133.66 -48.04 133.77 51.22 0.108 3.18 65 42 40 -8.38 -17.32 8.39 17.47 0.005 0.14 66 42 41 3.52 -32.98 -3.51 33.41 0.016 0.44 67 44 43 -159.98 -47.10 160.19 52.16 0.207 5.06 68 45 43 -174.24 -26.14 174.47 31.75 0.229 5.61 69 49 48 -129.16 -27.56 129.27 30.47 0.109 2.91 70 50 48 -117.48 -24.14 117.57 26.53 0.090 2.39 71 51 52 -418.80 -76.13 418.80 112.64 0.000 36.51 72 53 55 -511.90 -24.33 511.90 70.32 0.000 46.00 73 56 57 -325.18 65.28 325.80 -41.23 0.622 24.05 74 58 59 -526.39 -31.22 527.67 73.96 1.288 42.75 75 62 63 -440.68 15.63 442.10 12.05 1.419 27.68 76 60 62 -232.58 15.73 233.24 -8.58 0.662 7.14 77 61 60 -147.52 -43.26 147.82 46.33 0.292 3.07 78 61 62 -90.37 -5.60 90.78 10.13 0.413 4.53 -------- -------- Total: 36.062 699.06 help mpoption mpoption Used to set and retrieve a MATPOWER options struct. OPT = mpoption Returns the default options struct. OPT = mpoption(OVERRIDES) Returns the default options struct, with some fields overridden by values from OVERRIDES, which can be a struct or the name of a function that returns a struct. OPT = mpoption(NAME1, VALUE1, NAME2, VALUE2, ...) Same as previous, except override options are specified by NAME, VALUE pairs. This can be used to set any part of the options struct. The names can be individual fields or multi-level field names with embedded periods. The values can be scalars or structs. For backward compatibility, the NAMES and VALUES may correspond to old-style MATPOWER option names (elements in the old-style options vector) as well. OPT = mpoption(OPT0) Converts an old-style options vector OPT0 into the corresponding options struct. If OPT0 is an options struct it does nothing. OPT = mpoption(OPT0, OVERRIDES) Applies overrides to an existing set of options, OPT0, which can be an old-style options vector or an options struct. OPT = mpoption(OPT0, NAME1, VALUE1, NAME2, VALUE2, ...) Same as above except it uses the old-style options vector OPT0 as a base instead of the old default options vector. OPT_VECTOR = mpoption(OPT, []) Creates and returns an old-style options vector from an options struct OPT. Note: The use of old-style MATPOWER options vectors and their names and values has been deprecated and will be removed in a future version of MATPOWER. Until then, all uppercase option names are not permitted for new top-level options. Examples: mpopt = mpoption('pf.alg', 'FDXB', 'pf.tol', 1e-4); mpopt = mpoption(mpopt, 'opf.dc.solver', 'CPLEX', 'verbose', 2); The currently defined options are as follows: name default description [options] ---------------------- --------- ---------------------------------- Model options: model 'AC' AC vs. DC power flow model [ 'AC' - use nonlinear AC model & corresponding algorithms/options ] [ 'DC' - use linear DC model & corresponding algorithms/options ] Power Flow options: pf.alg 'NR' AC power flow algorithm [ 'NR' - Newton's method ] [ 'FDXB' - Fast-Decoupled (XB version) ] [ 'FDBX' - Fast-Decoupled (BX version) ] [ 'GS' - Gauss-Seidel ] pf.tol 1e-8 termination tolerance on per unit P & Q mismatch pf.nr.max_it 10 maximum number of iterations for Newton's method pf.fd.max_it 30 maximum number of iterations for fast decoupled method pf.gs.max_it 1000 maximum number of iterations for Gauss-Seidel method pf.enforce_q_lims 0 enforce gen reactive power limits at expense of |V| [ 0 - do NOT enforce limits ] [ 1 - enforce limits, simultaneous bus type conversion ] [ 2 - enforce limits, one-at-a-time bus type conversion ] Continuation Power Flow options: cpf.parameterization 3 choice of parameterization [ 1 - natural ] [ 2 - arc length ] [ 3 - pseudo arc length ] cpf.stop_at 'NOSE' determins stopping criterion [ 'NOSE' - stop when nose point is reached ] [ 'FULL' - trace full nose curve ] [ - stop upon reaching specified target lambda value ] cpf.enforce_p_lims 0 enforce gen active power limits [ 0 - do NOT enforce limits ] [ 1 - enforce limits, simultaneous bus type conversion ] cpf.enforce_q_lims 0 enforce gen reactive power limits at expense of |V| [ 0 - do NOT enforce limits ] [ 1 - enforce limits, simultaneous bus type conversion ] cpf.step 0.05 continuation power flow step size cpf.adapt_step 0 toggle adaptive step size feature [ 0 - adaptive step size disabled ] [ 1 - adaptive step size enabled ] cpf.step_min 1e-4 minimum allowed step size cpf.step_max 0.2 maximum allowed step size cpf.adapt_step_damping 0.7 damping factor for adaptive step sizing cpf.adapt_step_tol 1e-3 tolerance for adaptive step sizing cpf.target_lam_tol 1e-5 tolerance for target lambda detection cpf.nose_tol 1e-5 tolerance for nose point detection (pu) cpf.p_lims_tol 0.01 tolerance for generator active power limit enforcement (MW) cpf.q_lims_tol 0.01 tolerance for generator reactive power limit enforcement (MVAR) cpf.plot.level 0 control plotting of noze curve [ 0 - do not plot nose curve ] [ 1 - plot when completed ] [ 2 - plot incrementally at each iteration ] [ 3 - same as 2, with 'pause' at each iteration ] cpf.plot.bus index of bus whose voltage is to be plotted cpf.user_callback string containing the name of a user callback function, or struct with function name, and optional priority and/or args, or cell array of such strings and/or structs, see 'help cpf_default_callback' for details Optimal Power Flow options: name default description [options] ---------------------- --------- ---------------------------------- opf.ac.solver 'DEFAULT' AC optimal power flow solver [ 'DEFAULT' - choose solver based on availability in the following ] [ order: 'PDIPM', 'MIPS' ] [ 'MIPS' - MIPS, MATPOWER Interior Point Solver, primal/dual ] [ interior point method (pure Matlab) ] [ 'FMINCON' - MATLAB Optimization Toolbox, FMINCON ] [ 'IPOPT' - IPOPT, requires MEX interface to IPOPT solver ] [ available from: ] [ http://www.coin-or.org/projects/Ipopt.xml ] [ 'KNITRO' - KNITRO, requires MATLAB Optimization Toolbox and ] [ KNITRO libraries available from: http://www.ziena.com/] [ 'MINOPF' - MINOPF, MINOS-based solver, requires optional ] [ MEX-based MINOPF package, available from: ] [ http://www.pserc.cornell.edu/minopf/ ] [ 'PDIPM' - PDIPM, primal/dual interior point method, requires ] [ optional MEX-based TSPOPF package, available from: ] [ http://www.pserc.cornell.edu/tspopf/ ] [ 'SDPOPF' - SDPOPF, solver based on semidefinite relaxation of ] [ OPF problem, requires optional packages: ] [ SDP_PF, available in extras/sdp_pf ] [ YALMIP, available from: ] [ http://users.isy.liu.se/johanl/yalmip/ ] [ SDP solver such as SeDuMi, available from: ] [ http://sedumi.ie.lehigh.edu/ ] [ 'TRALM' - TRALM, trust region based augmented Langrangian ] [ method, requires TSPOPF (see 'PDIPM') ] opf.dc.solver 'DEFAULT' DC optimal power flow solver [ 'DEFAULT' - choose solver based on availability in the following ] [ order: 'GUROBI', 'CPLEX', 'MOSEK', 'OT', ] [ 'GLPK' (linear costs only), 'BPMPD', 'MIPS' ] [ 'MIPS' - MIPS, MATPOWER Interior Point Solver, primal/dual ] [ interior point method (pure Matlab) ] [ 'BPMPD' - BPMPD, requires optional MEX-based BPMPD_MEX package ] [ available from: http://www.pserc.cornell.edu/bpmpd/ ] [ 'CLP' - CLP, requires interface to COIN-OP LP solver ] [ available from:http://www.coin-or.org/projects/Clp.xml] [ 'CPLEX' - CPLEX, requires CPLEX solver available from: ] [ http://www.ibm.com/software/integration/ ... ] [ ... optimization/cplex-optimizer/ ] [ 'GLPK' - GLPK, requires interface to GLPK solver ] [ available from: http://www.gnu.org/software/glpk/ ] [ (GLPK does not work with quadratic cost functions) ] [ 'GUROBI' - GUROBI, requires Gurobi optimizer (v. 5+) ] [ available from: http://www.gurobi.com/ ] [ 'IPOPT' - IPOPT, requires MEX interface to IPOPT solver ] [ available from: ] [ http://www.coin-or.org/projects/Ipopt.xml ] [ 'MOSEK' - MOSEK, requires Matlab interface to MOSEK solver ] [ available from: http://www.mosek.com/ ] [ 'OT' - MATLAB Optimization Toolbox, QUADPROG, LINPROG ] opf.violation 5e-6 constraint violation tolerance opf.use_vg 0 respect gen voltage setpt [ 0-1 ] [ 0 - use specified bus Vmin & Vmax, and ignore gen Vg ] [ 1 - replace specified bus Vmin & Vmax by corresponding gen Vg ] [ between 0 and 1 - use a weighted average of the 2 options ] opf.flow_lim 'S' quantity limited by branch flow constraints [ 'S' - apparent power flow (limit in MVA) ] [ 'P' - active power flow (limit in MW) ] [ 'I' - current magnitude (limit in MVA at 1 p.u. voltage) ] opf.ignore_angle_lim 0 angle diff limits for branches [ 0 - include angle difference limits, if specified ] [ 1 - ignore angle difference limits even if specified ] opf.init_from_mpc -1 specify whether to use current state in MATPOWER case to initialize OPF (currently supported only for Ipopt, Knitro and MIPS solvers) [ -1 - MATPOWER decides, based on solver/algorithm ] [ 0 - ignore current state when initializing OPF ] [ 1 - use current state to initialize OPF ] opf.return_raw_der 0 for AC OPF, return constraint and derivative info in results.raw (in fields g, dg, df, d2f) [ 0 or 1 ] Output options: name default description [options] ---------------------- --------- ---------------------------------- verbose 1 amount of progress info printed [ 0 - print no progress info ] [ 1 - print a little progress info ] [ 2 - print a lot of progress info ] [ 3 - print all progress info ] out.all -1 controls pretty-printing of results [ -1 - individual flags control what prints ] [ 0 - do not print anything (overrides individual flags, ignored ] [ for files specified as FNAME arg to runpf(), runopf(), etc.)] [ 1 - print everything (overrides individual flags) ] out.sys_sum 1 print system summary [ 0 or 1 ] out.area_sum 0 print area summaries [ 0 or 1 ] out.bus 1 print bus detail [ 0 or 1 ] out.branch 1 print branch detail [ 0 or 1 ] out.gen 0 print generator detail [ 0 or 1 ] out.lim.all -1 controls constraint info output [ -1 - individual flags control what constraint info prints ] [ 0 - no constraint info (overrides individual flags) ] [ 1 - binding constraint info (overrides individual flags) ] [ 2 - all constraint info (overrides individual flags) ] out.lim.v 1 control voltage limit info [ 0 - do not print ] [ 1 - print binding constraints only ] [ 2 - print all constraints ] [ (same options for OUT_LINE_LIM, OUT_PG_LIM, OUT_QG_LIM) ] out.lim.line 1 control line flow limit info out.lim.pg 1 control gen active power limit info out.lim.qg 1 control gen reactive pwr limit info out.force 0 print results even if success flag = 0 [ 0 or 1 ] out.suppress_detail -1 suppress all output but system summary [ -1 - suppress details for large systems (> 500 buses) ] [ 0 - do not suppress any output specified by other flags ] [ 1 - suppress all output except system summary section ] [ (overrides individual flags, but not out.all = 1) ] Solver specific options: name default description [options] ----------------------- --------- ---------------------------------- MIPS: mips.linsolver '' linear system solver [ '' or '\' build-in backslash \ operator (e.g. x = A \ b) ] [ 'PARDISO' PARDISO solver (if available) ] mips.feastol 0 feasibility (equality) tolerance (set to opf.violation by default) mips.gradtol 1e-6 gradient tolerance mips.comptol 1e-6 complementary condition (inequality) tolerance mips.costtol 1e-6 optimality tolerance mips.max_it 150 maximum number of iterations mips.step_control 0 enable step-size cntrl [ 0 or 1 ] mips.sc.red_it 20 maximum number of reductions per iteration with step control mips.xi 0.99995 constant used in alpha updates* mips.sigma 0.1 centering parameter* mips.z0 1 used to initialize slack variables* mips.alpha_min 1e-8 returns "Numerically Failed" if either alpha parameter becomes smaller than this value* mips.rho_min 0.95 lower bound on rho_t* mips.rho_max 1.05 upper bound on rho_t* mips.mu_threshold 1e-5 KT multipliers smaller than this value for non-binding constraints are forced to zero mips.max_stepsize 1e10 returns "Numerically Failed" if the 2-norm of the reduced Newton step exceeds this value* * See the corresponding Appendix in the manual for details. CPLEX: cplex.lpmethod 0 solution algorithm for LP problems [ 0 - automatic: let CPLEX choose ] [ 1 - primal simplex ] [ 2 - dual simplex ] [ 3 - network simplex ] [ 4 - barrier ] [ 5 - sifting ] [ 6 - concurrent (dual, barrier, and primal) ] cplex.qpmethod 0 solution algorithm for QP problems [ 0 - automatic: let CPLEX choose ] [ 1 - primal simplex optimizer ] [ 2 - dual simplex optimizer ] [ 3 - network optimizer ] [ 4 - barrier optimizer ] cplex.opts see CPLEX_OPTIONS for details cplex.opt_fname see CPLEX_OPTIONS for details cplex.opt 0 see CPLEX_OPTIONS for details FMINCON: fmincon.alg 4 algorithm used by fmincon() for OPF for Opt Toolbox 4 and later [ 1 - active-set (not suitable for large problems) ] [ 2 - interior-point, w/default 'bfgs' Hessian approx ] [ 3 - interior-point, w/ 'lbfgs' Hessian approx ] [ 4 - interior-point, w/exact user-supplied Hessian ] [ 5 - interior-point, w/Hessian via finite differences ] [ 6 - sqp (not suitable for large problems) ] fmincon.tol_x 1e-4 termination tol on x fmincon.tol_f 1e-4 termination tol on f fmincon.max_it 0 maximum number of iterations [ 0 => default ] GUROBI: gurobi.method 0 solution algorithm (Method) [ -1 - automatic, let Gurobi decide ] [ 0 - primal simplex ] [ 1 - dual simplex ] [ 2 - barrier ] [ 3 - concurrent (LP only) ] [ 4 - deterministic concurrent (LP only) ] gurobi.timelimit Inf maximum time allowed (TimeLimit) gurobi.threads 0 max number of threads (Threads) gurobi.opts see GUROBI_OPTIONS for details gurobi.opt_fname see GUROBI_OPTIONS for details gurobi.opt 0 see GUROBI_OPTIONS for details IPOPT: ipopt.opts see IPOPT_OPTIONS for details ipopt.opt_fname see IPOPT_OPTIONS for details ipopt.opt 0 see IPOPT_OPTIONS for details KNITRO: knitro.tol_x 1e-4 termination tol on x knitro.tol_f 1e-4 termination tol on f knitro.opt_fname name of user-supplied native KNITRO options file that overrides all other options knitro.opt 0 if knitro.opt_fname is empty and knitro.opt is a non-zero integer N then knitro.opt_fname is auto- generated as: 'knitro_user_options_N.txt' LINPROG: linprog LINPROG options passed to OPTIMOPTIONS or OPTIMSET. see LINPROG in the Optimization Toolbox for details MINOPF: minopf.feastol 0 (1e-3) primal feasibility tolerance (set to opf.violation by default) minopf.rowtol 0 (1e-3) row tolerance minopf.xtol 0 (1e-4) x tolerance minopf.majdamp 0 (0.5) major damping parameter minopf.mindamp 0 (2.0) minor damping parameter minopf.penalty 0 (1.0) penalty parameter minopf.major_it 0 (200) major iterations minopf.minor_it 0 (2500) minor iterations minopf.max_it 0 (2500) iterations limit minopf.verbosity -1 amount of progress info printed [ -1 - controlled by 'verbose' option ] [ 0 - print nothing ] [ 1 - print only termination status message ] [ 2 - print termination status and screen progress ] [ 3 - print screen progress, report file (usually fort.9) ] minopf.core 0 (1200*nb + 2*(nb+ng)^2) memory allocation minopf.supbasic_lim 0 (2*nb + 2*ng) superbasics limit minopf.mult_price 0 (30) multiple price MOSEK: mosek.lp_alg 0 solution algorithm (MSK_IPAR_OPTIMIZER) for MOSEK 8.x ... (see MOSEK_SYMBCON for a "better way") [ 0 - automatic: let MOSEK choose ] [ 1 - dual simplex ] [ 2 - automatic: let MOSEK choose ] [ 3 - automatic simplex (MOSEK chooses which simplex method) ] [ 4 - interior point ] [ 6 - primal simplex ] mosek.max_it 0 (400) interior point max iterations (MSK_IPAR_INTPNT_MAX_ITERATIONS) mosek.gap_tol 0 (1e-8) interior point relative gap tol (MSK_DPAR_INTPNT_TOL_REL_GAP) mosek.max_time 0 (-1) maximum time allowed (MSK_DPAR_OPTIMIZER_MAX_TIME) mosek.num_threads 0 (1) max number of threads (MSK_IPAR_INTPNT_NUM_THREADS) mosek.opts see MOSEK_OPTIONS for details mosek.opt_fname see MOSEK_OPTIONS for details mosek.opt 0 see MOSEK_OPTIONS for details QUADPROG: quadprog QUADPROG options passed to OPTIMOPTIONS or OPTIMSET. see QUADPROG in the Optimization Toolbox for details TSPOPF: pdipm.feastol 0 feasibility (equality) tolerance (set to opf.violation by default) pdipm.gradtol 1e-6 gradient tolerance pdipm.comptol 1e-6 complementary condition (inequality) tolerance pdipm.costtol 1e-6 optimality tolerance pdipm.max_it 150 maximum number of iterations pdipm.step_control 0 enable step-size cntrl [ 0 or 1 ] pdipm.sc.red_it 20 maximum number of reductions per iteration with step control pdipm.sc.smooth_ratio 0.04 piecewise linear curve smoothing ratio tralm.feastol 0 feasibility tolerance (set to opf.violation by default) tralm.primaltol 5e-4 primal variable tolerance tralm.dualtol 5e-4 dual variable tolerance tralm.costtol 1e-5 optimality tolerance tralm.major_it 40 maximum number of major iterations tralm.minor_it 40 maximum number of minor iterations tralm.smooth_ratio 0.04 piecewise linear curve smoothing ratio Experimental Options: exp.sys_wide_zip_loads.pw 1 x 3 vector of active load fraction to be modeled as constant power, constant current and constant impedance, respectively, where means use [1 0 0] exp.sys_wide_zip_loads.qw same for reactive power, where means use same value as for 'pw' [baseMVA, bus, gen, branch] = runpf('esca64_n'); MATPOWER Version 6.0, 16-Dec-2016 -- AC Power Flow (Newton) Newton's method power flow converged in 4 iterations. Converged in 0.02 seconds ================================================================================ | System Summary | ================================================================================ How many? How much? P (MW) Q (MVAr) --------------------- ------------------- ------------- ----------------- Buses 64 Total Gen Capacity 6200.0 -2750.0 to 5300.0 Generators 11 On-line Capacity 6200.0 -2750.0 to 5300.0 Committed Gens 11 Generation (actual) 4181.0 631.4 Loads 28 Load 4144.9 1152.9 Fixed 28 Fixed 4144.9 1152.9 Dispatchable 0 Dispatchable -0.0 of -0.0 -0.0 Shunts 6 Shunt (inj) -0.0 274.9 Branches 78 Losses (I^2 * Z) 36.06 699.06 Transformers 38 Branch Charging (inj) - 945.7 Inter-ties 7 Total Inter-tie Flow 1951.5 257.6 Areas 3 Minimum Maximum ------------------------- -------------------------------- Voltage Magnitude 0.900 p.u. @ bus 31 1.078 p.u. @ bus 46 Voltage Angle -15.50 deg @ bus 25 2.15 deg @ bus 57 P Losses (I^2*R) - 5.84 MW @ line 54-56 Q Losses (I^2*X) - 46.27 MVAr @ line 28-54 ================================================================================ | Bus Data | ================================================================================ Bus Voltage Generation Load # Mag(pu) Ang(deg) P (MW) Q (MVAr) P (MW) Q (MVAr) ----- ------- -------- -------- -------- -------- -------- 1 1.007 -4.582 - - - - 2 1.007 -4.563 - - - - 3 1.000 -3.975 - - 389.04 68.62 4 1.010 -1.961 325.80 13.13 - - 5 1.010 0.756 465.40 52.72 - - 6 1.018 -3.677 - - - - 7 1.018 -3.680 - - - - 8 1.000 0.059 232.70 34.24 6.34 4.22 9 1.000 0.059 232.70 34.24 6.34 4.22 10 1.012 -6.789 - - - - 11 1.018 -7.427 - - 87.00 41.80 12 1.030 -7.389 - - 20.72 3.40 13 1.016 -7.274 - - - - 14 1.016 -3.945 - - 101.74 37.92 15 1.025 0.924 325.80 40.84 - - 16 1.022 -9.359 - - - - 17 1.025 -9.406 - - 184.66 35.08 18 1.017 -9.739 - - - - 19 0.959 -11.595 - - 328.42 88.26 20 1.012 -9.004 - - 384.98 37.72 21 1.018 -9.303 - - - - 22 1.019 -9.856 - - - - 23 0.962 -11.746 - - - - 24 0.919 -13.692 - - 158.76 95.44 25 0.935 -15.496 - - 209.50 81.06 26 0.943 -14.172 - - 5.70 2.32 27 0.944 -14.135 - - - - 28 1.036 -8.181 - - 376.42 2.84 29 1.007 -9.306 - - - - 30 0.953 -11.501 - - - - 31 0.900 -14.222 - - 209.62 132.98 32 0.945 -13.758 - - 86.88 10.04 33 0.945 -13.613 - - 64.16 15.10 34 0.946 -13.202 - - - - 35 1.070 -6.651 - - - - 36 1.050 -1.563 372.30 228.44 - - 37 1.066 -7.055 - - - - 38 1.065 -7.491 - - - - 39 1.030 -8.674 - - 133.66 48.04 40 1.067 -6.098 - - - - 41 1.060 -6.376 - - - - 42 1.040 -6.269 - - 4.86 50.30 43 1.049 -8.446 - - - - 44 1.038 -10.077 - - 159.98 47.10 45 1.042 -10.226 - - 174.24 26.14 46 1.078 -5.851 - - - - 47 1.049 -7.804 - - - - 48 1.065 -7.608 - - - - 49 1.059 -8.825 - - 129.16 27.56 50 1.060 -8.714 - - 117.48 24.14 51 1.066 -5.790 - - - - 52 1.015 -1.039 418.80 112.64 - - 53 1.042 -3.550 - - 200.00 62.70 54 1.042 -3.565 - - - - 55 1.025 1.551 511.90 70.32 - - 56 1.056 -1.990 - - -107.66 73.70 57 1.020 2.149 325.80 -41.23 - - 58 1.065 -4.585 - - 454.32 102.86 59 1.050 0.000* 527.67 73.96 - - 60 1.072 -3.216 - - 84.76 11.34 61 1.064 -4.275 - - 57.20 6.98 62 1.073 -1.455 - - 116.66 11.04 63 1.050 2.137 442.10 12.05 - - 64 1.068 -4.250 - - - - -------- -------- -------- -------- Total: 4180.97 631.35 4144.91 1152.91 ================================================================================ | Branch Data | ================================================================================ Brnch From To From Bus Injection To Bus Injection Loss (I^2 * Z) # Bus Bus P (MW) Q (MVAr) P (MW) Q (MVAr) P (MW) Q (MVAr) ----- ----- ----- -------- -------- -------- -------- -------- -------- 1 1 20 199.72 -28.78 -198.45 28.81 1.273 15.51 2 1 20 199.72 -28.78 -198.45 28.81 1.273 15.51 3 6 10 401.64 20.42 -400.39 -24.98 1.253 21.93 4 7 14 51.08 9.78 -51.06 -28.65 0.017 0.28 5 10 20 292.60 -22.49 -291.93 7.67 0.669 11.30 6 14 29 274.61 3.66 -272.99 -14.88 1.617 25.73 7 16 21 -8.62 39.20 8.63 -52.75 0.015 0.17 8 17 28 -176.04 -74.43 176.41 56.13 0.366 4.42 9 18 61 -311.95 -121.40 315.23 101.10 3.288 34.94 10 18 21 -45.64 -17.34 45.67 -15.65 0.026 0.35 11 19 30 -5.85 95.73 5.97 -99.63 0.117 0.71 12 19 23 34.45 -58.61 -34.41 55.03 0.044 0.26 13 20 29 94.89 73.31 -94.84 -79.38 0.044 0.86 14 20 21 54.36 -81.47 -54.30 68.41 0.058 0.74 15 20 22 154.60 -94.85 -154.32 80.11 0.275 2.88 16 22 47 -186.35 -141.50 187.22 112.80 0.863 10.40 17 28 54 -572.55 16.18 576.53 2.35 3.983 46.27 18 28 43 19.72 -75.14 -19.67 52.01 0.053 0.87 19 35 37 318.52 116.50 -318.32 -118.77 0.202 2.63 20 35 38 184.09 31.63 -183.90 -41.66 0.185 2.84 21 35 40 -130.31 37.05 130.42 -51.55 0.116 1.36 22 37 43 220.36 127.06 -219.89 -134.53 0.470 7.51 23 37 48 97.96 -8.29 -97.89 -7.57 0.068 0.95 24 38 48 50.13 -9.56 -50.12 0.81 0.009 0.10 25 40 51 -138.81 34.08 138.89 -41.60 0.073 0.78 26 41 51 -279.59 -122.46 279.91 117.73 0.328 3.53 27 41 47 283.09 89.04 -282.37 -100.08 0.720 8.08 28 43 47 -95.09 -1.39 95.16 -12.72 0.066 1.07 29 46 58 -99.04 -9.99 99.15 -124.89 0.115 2.88 30 46 48 99.04 9.99 -98.82 -50.24 0.215 3.39 31 53 64 27.27 -106.39 -27.09 30.61 0.175 2.05 32 54 56 -291.89 65.58 297.74 -74.47 5.842 7.18 33 56 61 135.10 -64.51 -134.54 12.56 0.561 5.66 34 58 64 -27.08 -54.52 27.09 -30.61 0.008 0.19 35 1 2 -325.07 1.78 325.07 -1.67 0.000 0.10 36 7 6 -51.08 -9.78 51.08 9.78 -0.000 0.00 37 54 53 -284.63 -67.93 284.63 68.01 0.000 0.08 38 1 3 -74.37 55.78 74.43 -54.61 0.060 1.18 39 3 5 -463.46 -14.01 465.40 52.72 1.935 38.71 40 2 4 -325.07 1.67 325.80 13.13 0.730 14.80 41 6 8 -226.36 -15.10 226.36 30.02 0.000 14.91 42 6 9 -226.36 -15.10 226.36 30.02 0.000 14.91 43 11 10 -59.47 -67.59 59.53 69.20 0.057 1.60 44 10 13 48.26 -21.73 -48.25 22.21 0.014 0.49 45 11 13 -27.53 25.79 27.53 -25.66 0.000 0.14 46 12 13 -20.72 -3.40 20.72 3.44 0.000 0.04 47 14 15 -325.29 -12.93 325.80 40.84 0.513 27.91 48 17 16 -8.62 39.35 8.62 -39.20 0.000 0.15 49 19 18 -178.51 -62.69 178.79 69.37 0.284 6.68 50 19 18 -178.51 -62.69 178.79 69.37 0.284 6.68 51 23 22 -170.11 -50.39 170.34 56.63 0.233 6.24 52 23 22 -170.11 -50.39 170.34 56.63 0.233 6.24 53 24 23 -158.76 -95.44 159.11 103.17 0.349 7.73 54 23 27 215.51 100.01 -215.20 -89.16 0.305 10.85 55 25 27 -209.50 -81.06 209.50 86.84 0.006 5.78 56 26 27 -5.70 -2.32 5.70 2.32 0.000 0.00 57 30 29 -183.63 -39.63 183.92 47.13 0.284 7.50 58 30 29 -183.63 -39.63 183.92 47.13 0.284 7.50 59 31 30 -209.62 -132.98 210.13 147.74 0.509 14.76 60 30 34 151.17 31.16 -151.04 -26.48 0.131 4.67 61 32 34 -86.88 -10.04 86.88 10.90 0.001 0.86 62 33 34 -64.16 -15.10 64.16 15.59 0.000 0.49 63 35 36 -372.30 -185.17 372.30 228.44 0.000 43.26 64 39 38 -133.66 -48.04 133.77 51.22 0.108 3.18 65 42 40 -8.38 -17.32 8.39 17.47 0.005 0.14 66 42 41 3.52 -32.98 -3.51 33.41 0.016 0.44 67 44 43 -159.98 -47.10 160.19 52.16 0.207 5.06 68 45 43 -174.24 -26.14 174.47 31.75 0.229 5.61 69 49 48 -129.16 -27.56 129.27 30.47 0.109 2.91 70 50 48 -117.48 -24.14 117.57 26.53 0.090 2.39 71 51 52 -418.80 -76.13 418.80 112.64 0.000 36.51 72 53 55 -511.90 -24.33 511.90 70.32 0.000 46.00 73 56 57 -325.18 65.28 325.80 -41.23 0.622 24.05 74 58 59 -526.39 -31.22 527.67 73.96 1.288 42.75 75 62 63 -440.68 15.63 442.10 12.05 1.419 27.68 76 60 62 -232.58 15.73 233.24 -8.58 0.662 7.14 77 61 60 -147.52 -43.26 147.82 46.33 0.292 3.07 78 61 62 -90.37 -5.60 90.78 10.13 0.413 4.53 -------- -------- Total: 36.062 699.06 branch(1,:) ans = Columns 1 through 8 1.0000 20.0000 0.0032 0.0390 0.1520 875.0000 912.5000 950.0000 Columns 9 through 16 0 0 1.0000 -360.0000 360.0000 199.7191 -28.7793 -198.4462 Column 17 28.8071 MVAfr=sqrt(branch(:,14).^2+branch(:,15).^2) MVAfr = 201.7820 201.7820 402.1602 52.0067 293.4613 274.6337 40.1350 191.1314 334.7358 48.8241 95.9042 67.9819 119.9093 97.9357 181.3782 233.9875 572.7749 77.6881 339.1567 186.7829 135.4725 254.3708 98.3060 51.0366 142.9358 305.2278 296.7676 95.1025 99.5412 99.5412 109.8266 299.1712 149.7120 60.8775 325.0753 52.0067 292.6295 92.9645 463.6763 325.0747 226.8633 226.8633 90.0296 52.9289 37.7254 20.9971 325.5439 40.2857 189.1963 189.1963 177.4119 177.4119 185.2377 237.5845 224.6339 6.1541 187.8618 187.8618 248.2409 154.3488 87.4572 65.9129 415.8087 142.0302 19.2463 33.1635 166.7684 176.1889 132.0667 119.9335 425.6636 512.4776 331.6654 527.3120 440.9577 233.1069 153.7358 90.5439 pctfr=MVAfr./branch(:,6)*100 pctfr = 23.0608 23.0608 60.9334 8.5961 58.6923 45.7723 6.6892 31.8552 55.7893 8.1374 15.9840 11.3303 19.9849 16.3226 30.2297 38.9979 81.8250 12.9480 56.5261 31.1305 22.5787 42.3951 16.3843 8.5061 23.8226 50.8713 49.4613 15.8504 16.5902 16.5902 18.3044 49.8619 24.9520 10.1463 46.4393 8.6678 48.7716 9.2964 46.3676 43.3433 37.8106 37.8106 15.0049 8.8215 6.2876 3.4995 40.6930 6.7143 31.5327 31.5327 29.5687 29.5687 30.8730 39.5974 37.4390 1.0257 31.3103 31.3103 41.3735 25.7248 14.5762 10.9855 46.2010 23.6717 3.2077 5.5272 27.7947 29.3648 22.0111 19.9889 42.5664 39.4214 41.4582 26.3656 40.0871 38.8512 25.6226 15.0906 help sort sort Sort in ascending or descending order. For vectors, sort(X) sorts the elements of X in ascending order. For matrices, sort(X) sorts each column of X in ascending order. For N-D arrays, sort(X) sorts along the first non-singleton dimension of X. When X is a cell array of strings, sort(X) sorts the strings in ASCII dictionary order. Y = sort(X,DIM,MODE) has two optional parameters. DIM selects a dimension along which to sort. MODE selects the direction of the sort 'ascend' results in ascending order 'descend' results in descending order The result is in Y which has the same shape and type as X. [Y,I] = sort(X,DIM,MODE) also returns an index matrix I. If X is a vector, then Y = X(I). If X is an m-by-n matrix and DIM=1, then for j = 1:n, Y(:,j) = X(I(:,j),j); end When X is complex, the elements are sorted by ABS(X). Complex matches are further sorted by ANGLE(X). When more than one element has the same value, the order of the elements is preserved in the sorted result and the indices relating to equal elements will be ascending. Example: If X = [3 7 5 0 4 2] then sort(X,1) is [0 4 2 and sort(X,2) is [3 5 7 3 7 5] 0 2 4]; See also issorted, sortrows, min, max, mean, median, unique. Other functions named sort Reference page in Help browser doc sort [dum,ndxj]=sort(pctfr) dum = 1.0257 3.2077 3.4995 5.5272 6.2876 6.6892 6.7143 8.1374 8.5061 8.5961 8.6678 8.8215 9.2964 10.1463 10.9855 11.3303 12.9480 14.5762 15.0049 15.0906 15.8504 15.9840 16.3226 16.3843 16.5902 16.5902 18.3044 19.9849 19.9889 22.0111 22.5787 23.0608 23.0608 23.6717 23.8226 24.9520 25.6226 25.7248 26.3656 27.7947 29.3648 29.5687 29.5687 30.2297 30.8730 31.1305 31.3103 31.3103 31.5327 31.5327 31.8552 37.4390 37.8106 37.8106 38.8512 38.9979 39.4214 39.5974 40.0871 40.6930 41.3735 41.4582 42.3951 42.5664 43.3433 45.7723 46.2010 46.3676 46.4393 48.7716 49.4613 49.8619 50.8713 55.7893 56.5261 58.6923 60.9334 81.8250 ndxj = 56 65 46 66 45 7 48 10 24 4 36 44 38 34 62 12 18 61 43 78 28 11 14 23 29 30 31 13 70 69 21 1 2 64 25 33 77 60 74 67 68 51 52 15 53 20 57 58 49 50 8 55 41 42 76 16 72 54 75 47 59 73 22 71 40 6 63 39 35 37 27 32 26 9 19 5 3 17 [branch(ndxj,1:2),branch(ndxj,6),pctfr(ndxj)] ans = 1.0e+03 * 0.0260 0.0270 0.6000 0.0010 0.0420 0.0400 0.6000 0.0032 0.0120 0.0130 0.6000 0.0035 0.0420 0.0410 0.6000 0.0055 0.0110 0.0130 0.6000 0.0063 0.0160 0.0210 0.6000 0.0067 0.0170 0.0160 0.6000 0.0067 0.0180 0.0210 0.6000 0.0081 0.0380 0.0480 0.6000 0.0085 0.0070 0.0140 0.6050 0.0086 0.0070 0.0060 0.6000 0.0087 0.0100 0.0130 0.6000 0.0088 0.0010 0.0030 1.0000 0.0093 0.0580 0.0640 0.6000 0.0101 0.0330 0.0340 0.6000 0.0110 0.0190 0.0230 0.6000 0.0113 0.0280 0.0430 0.6000 0.0129 0.0320 0.0340 0.6000 0.0146 0.0110 0.0100 0.6000 0.0150 0.0610 0.0620 0.6000 0.0151 0.0430 0.0470 0.6000 0.0159 0.0190 0.0300 0.6000 0.0160 0.0200 0.0210 0.6000 0.0163 0.0370 0.0480 0.6000 0.0164 0.0460 0.0580 0.6000 0.0166 0.0460 0.0480 0.6000 0.0166 0.0530 0.0640 0.6000 0.0183 0.0200 0.0290 0.6000 0.0200 0.0500 0.0480 0.6000 0.0200 0.0490 0.0480 0.6000 0.0220 0.0350 0.0400 0.6000 0.0226 0.0010 0.0200 0.8750 0.0231 0.0010 0.0200 0.8750 0.0231 0.0390 0.0380 0.6000 0.0237 0.0400 0.0510 0.6000 0.0238 0.0560 0.0610 0.6000 0.0250 0.0610 0.0600 0.6000 0.0256 0.0300 0.0340 0.6000 0.0257 0.0580 0.0590 2.0000 0.0264 0.0440 0.0430 0.6000 0.0278 0.0450 0.0430 0.6000 0.0294 0.0230 0.0220 0.6000 0.0296 0.0230 0.0220 0.6000 0.0296 0.0200 0.0220 0.6000 0.0302 0.0240 0.0230 0.6000 0.0309 0.0350 0.0380 0.6000 0.0311 0.0300 0.0290 0.6000 0.0313 0.0300 0.0290 0.6000 0.0313 0.0190 0.0180 0.6000 0.0315 0.0190 0.0180 0.6000 0.0315 0.0170 0.0280 0.6000 0.0319 0.0250 0.0270 0.6000 0.0374 0.0060 0.0080 0.6000 0.0378 0.0060 0.0090 0.6000 0.0378 0.0600 0.0620 0.6000 0.0389 0.0220 0.0470 0.6000 0.0390 0.0530 0.0550 1.3000 0.0394 0.0230 0.0270 0.6000 0.0396 0.0620 0.0630 1.1000 0.0401 0.0140 0.0150 0.8000 0.0407 0.0310 0.0300 0.6000 0.0414 0.0560 0.0570 0.8000 0.0415 0.0370 0.0430 0.6000 0.0424 0.0510 0.0520 1.0000 0.0426 0.0020 0.0040 0.7500 0.0433 0.0140 0.0290 0.6000 0.0458 0.0350 0.0360 0.9000 0.0462 0.0030 0.0050 1.0000 0.0464 0.0010 0.0020 0.7000 0.0464 0.0540 0.0530 0.6000 0.0488 0.0410 0.0470 0.6000 0.0495 0.0540 0.0560 0.6000 0.0499 0.0410 0.0510 0.6000 0.0509 0.0180 0.0610 0.6000 0.0558 0.0350 0.0370 0.6000 0.0565 0.0100 0.0200 0.5000 0.0587 0.0060 0.0100 0.6600 0.0609 0.0280 0.0540 0.7000 0.0818 [branch(ndxj,1:2),pctfr(ndxj)] ans = 26.0000 27.0000 1.0257 42.0000 40.0000 3.2077 12.0000 13.0000 3.4995 42.0000 41.0000 5.5272 11.0000 13.0000 6.2876 16.0000 21.0000 6.6892 17.0000 16.0000 6.7143 18.0000 21.0000 8.1374 38.0000 48.0000 8.5061 7.0000 14.0000 8.5961 7.0000 6.0000 8.6678 10.0000 13.0000 8.8215 1.0000 3.0000 9.2964 58.0000 64.0000 10.1463 33.0000 34.0000 10.9855 19.0000 23.0000 11.3303 28.0000 43.0000 12.9480 32.0000 34.0000 14.5762 11.0000 10.0000 15.0049 61.0000 62.0000 15.0906 43.0000 47.0000 15.8504 19.0000 30.0000 15.9840 20.0000 21.0000 16.3226 37.0000 48.0000 16.3843 46.0000 58.0000 16.5902 46.0000 48.0000 16.5902 53.0000 64.0000 18.3044 20.0000 29.0000 19.9849 50.0000 48.0000 19.9889 49.0000 48.0000 22.0111 35.0000 40.0000 22.5787 1.0000 20.0000 23.0608 1.0000 20.0000 23.0608 39.0000 38.0000 23.6717 40.0000 51.0000 23.8226 56.0000 61.0000 24.9520 61.0000 60.0000 25.6226 30.0000 34.0000 25.7248 58.0000 59.0000 26.3656 44.0000 43.0000 27.7947 45.0000 43.0000 29.3648 23.0000 22.0000 29.5687 23.0000 22.0000 29.5687 20.0000 22.0000 30.2297 24.0000 23.0000 30.8730 35.0000 38.0000 31.1305 30.0000 29.0000 31.3103 30.0000 29.0000 31.3103 19.0000 18.0000 31.5327 19.0000 18.0000 31.5327 17.0000 28.0000 31.8552 25.0000 27.0000 37.4390 6.0000 8.0000 37.8106 6.0000 9.0000 37.8106 60.0000 62.0000 38.8512 22.0000 47.0000 38.9979 53.0000 55.0000 39.4214 23.0000 27.0000 39.5974 62.0000 63.0000 40.0871 14.0000 15.0000 40.6930 31.0000 30.0000 41.3735 56.0000 57.0000 41.4582 37.0000 43.0000 42.3951 51.0000 52.0000 42.5664 2.0000 4.0000 43.3433 14.0000 29.0000 45.7723 35.0000 36.0000 46.2010 3.0000 5.0000 46.3676 1.0000 2.0000 46.4393 54.0000 53.0000 48.7716 41.0000 47.0000 49.4613 54.0000 56.0000 49.8619 41.0000 51.0000 50.8713 18.0000 61.0000 55.7893 35.0000 37.0000 56.5261 10.0000 20.0000 58.6923 6.0000 10.0000 60.9334 28.0000 54.0000 81.8250 [branch(ndxj(end:1),1:2),pctfr(ndxj(end:1))] ans = Empty matrix: 0-by-3 [branch(ndxj(end:-1:1),1:2),pctfr(ndxj(end:-1:1))] ans = 28.0000 54.0000 81.8250 6.0000 10.0000 60.9334 10.0000 20.0000 58.6923 35.0000 37.0000 56.5261 18.0000 61.0000 55.7893 41.0000 51.0000 50.8713 54.0000 56.0000 49.8619 41.0000 47.0000 49.4613 54.0000 53.0000 48.7716 1.0000 2.0000 46.4393 3.0000 5.0000 46.3676 35.0000 36.0000 46.2010 14.0000 29.0000 45.7723 2.0000 4.0000 43.3433 51.0000 52.0000 42.5664 37.0000 43.0000 42.3951 56.0000 57.0000 41.4582 31.0000 30.0000 41.3735 14.0000 15.0000 40.6930 62.0000 63.0000 40.0871 23.0000 27.0000 39.5974 53.0000 55.0000 39.4214 22.0000 47.0000 38.9979 60.0000 62.0000 38.8512 6.0000 9.0000 37.8106 6.0000 8.0000 37.8106 25.0000 27.0000 37.4390 17.0000 28.0000 31.8552 19.0000 18.0000 31.5327 19.0000 18.0000 31.5327 30.0000 29.0000 31.3103 30.0000 29.0000 31.3103 35.0000 38.0000 31.1305 24.0000 23.0000 30.8730 20.0000 22.0000 30.2297 23.0000 22.0000 29.5687 23.0000 22.0000 29.5687 45.0000 43.0000 29.3648 44.0000 43.0000 27.7947 58.0000 59.0000 26.3656 30.0000 34.0000 25.7248 61.0000 60.0000 25.6226 56.0000 61.0000 24.9520 40.0000 51.0000 23.8226 39.0000 38.0000 23.6717 1.0000 20.0000 23.0608 1.0000 20.0000 23.0608 35.0000 40.0000 22.5787 49.0000 48.0000 22.0111 50.0000 48.0000 19.9889 20.0000 29.0000 19.9849 53.0000 64.0000 18.3044 46.0000 48.0000 16.5902 46.0000 58.0000 16.5902 37.0000 48.0000 16.3843 20.0000 21.0000 16.3226 19.0000 30.0000 15.9840 43.0000 47.0000 15.8504 61.0000 62.0000 15.0906 11.0000 10.0000 15.0049 32.0000 34.0000 14.5762 28.0000 43.0000 12.9480 19.0000 23.0000 11.3303 33.0000 34.0000 10.9855 58.0000 64.0000 10.1463 1.0000 3.0000 9.2964 10.0000 13.0000 8.8215 7.0000 6.0000 8.6678 7.0000 14.0000 8.5961 38.0000 48.0000 8.5061 18.0000 21.0000 8.1374 17.0000 16.0000 6.7143 16.0000 21.0000 6.6892 11.0000 13.0000 6.2876 42.0000 41.0000 5.5272 12.0000 13.0000 3.4995 42.0000 40.0000 3.2077 26.0000 27.0000 1.0257 [branch(ndxj(end:-1:1),1:2),branch(ndxj(end:-1:1),6),pctfr(ndxj(end:-1:1))] ans = 1.0e+03 * 0.0280 0.0540 0.7000 0.0818 0.0060 0.0100 0.6600 0.0609 0.0100 0.0200 0.5000 0.0587 0.0350 0.0370 0.6000 0.0565 0.0180 0.0610 0.6000 0.0558 0.0410 0.0510 0.6000 0.0509 0.0540 0.0560 0.6000 0.0499 0.0410 0.0470 0.6000 0.0495 0.0540 0.0530 0.6000 0.0488 0.0010 0.0020 0.7000 0.0464 0.0030 0.0050 1.0000 0.0464 0.0350 0.0360 0.9000 0.0462 0.0140 0.0290 0.6000 0.0458 0.0020 0.0040 0.7500 0.0433 0.0510 0.0520 1.0000 0.0426 0.0370 0.0430 0.6000 0.0424 0.0560 0.0570 0.8000 0.0415 0.0310 0.0300 0.6000 0.0414 0.0140 0.0150 0.8000 0.0407 0.0620 0.0630 1.1000 0.0401 0.0230 0.0270 0.6000 0.0396 0.0530 0.0550 1.3000 0.0394 0.0220 0.0470 0.6000 0.0390 0.0600 0.0620 0.6000 0.0389 0.0060 0.0090 0.6000 0.0378 0.0060 0.0080 0.6000 0.0378 0.0250 0.0270 0.6000 0.0374 0.0170 0.0280 0.6000 0.0319 0.0190 0.0180 0.6000 0.0315 0.0190 0.0180 0.6000 0.0315 0.0300 0.0290 0.6000 0.0313 0.0300 0.0290 0.6000 0.0313 0.0350 0.0380 0.6000 0.0311 0.0240 0.0230 0.6000 0.0309 0.0200 0.0220 0.6000 0.0302 0.0230 0.0220 0.6000 0.0296 0.0230 0.0220 0.6000 0.0296 0.0450 0.0430 0.6000 0.0294 0.0440 0.0430 0.6000 0.0278 0.0580 0.0590 2.0000 0.0264 0.0300 0.0340 0.6000 0.0257 0.0610 0.0600 0.6000 0.0256 0.0560 0.0610 0.6000 0.0250 0.0400 0.0510 0.6000 0.0238 0.0390 0.0380 0.6000 0.0237 0.0010 0.0200 0.8750 0.0231 0.0010 0.0200 0.8750 0.0231 0.0350 0.0400 0.6000 0.0226 0.0490 0.0480 0.6000 0.0220 0.0500 0.0480 0.6000 0.0200 0.0200 0.0290 0.6000 0.0200 0.0530 0.0640 0.6000 0.0183 0.0460 0.0480 0.6000 0.0166 0.0460 0.0580 0.6000 0.0166 0.0370 0.0480 0.6000 0.0164 0.0200 0.0210 0.6000 0.0163 0.0190 0.0300 0.6000 0.0160 0.0430 0.0470 0.6000 0.0159 0.0610 0.0620 0.6000 0.0151 0.0110 0.0100 0.6000 0.0150 0.0320 0.0340 0.6000 0.0146 0.0280 0.0430 0.6000 0.0129 0.0190 0.0230 0.6000 0.0113 0.0330 0.0340 0.6000 0.0110 0.0580 0.0640 0.6000 0.0101 0.0010 0.0030 1.0000 0.0093 0.0100 0.0130 0.6000 0.0088 0.0070 0.0060 0.6000 0.0087 0.0070 0.0140 0.6050 0.0086 0.0380 0.0480 0.6000 0.0085 0.0180 0.0210 0.6000 0.0081 0.0170 0.0160 0.6000 0.0067 0.0160 0.0210 0.6000 0.0067 0.0110 0.0130 0.6000 0.0063 0.0420 0.0410 0.6000 0.0055 0.0120 0.0130 0.6000 0.0035 0.0420 0.0400 0.6000 0.0032 0.0260 0.0270 0.6000 0.0010 help fprintf fprintf Write formatted data to text file. fprintf(FID, FORMAT, A, ...) applies the FORMAT to all elements of array A and any additional array arguments in column order, and writes the data to a text file. FID is an integer file identifier. Obtain FID from FOPEN, or set it to 1 (for standard output, the screen) or 2 (standard error). fprintf uses the encoding scheme specified in the call to FOPEN. fprintf(FORMAT, A, ...) formats data and displays the results on the screen. COUNT = fprintf(...) returns the number of bytes that fprintf writes. FORMAT is a string that describes the format of the output fields, and can include combinations of the following: * Conversion specifications, which include a % character, a conversion character (such as d, i, o, u, x, f, e, g, c, or s), and optional flags, width, and precision fields. For more details, type "doc fprintf" at the command prompt. * Literal text to print. * Escape characters, including: \b Backspace '' Single quotation mark \f Form feed %% Percent character \n New line \\ Backslash \r Carriage return \xN Hexadecimal number N \t Horizontal tab \N Octal number N For most cases, \n is sufficient for a single line break. However, if you are creating a file for use with Microsoft Notepad, specify a combination of \r\n to move to a new line. Notes: If you apply an integer or string conversion to a numeric value that contains a fraction, MATLAB overrides the specified conversion, and uses %e. Numeric conversions print only the real component of complex numbers. Example: Create a text file called exp.txt containing a short table of the exponential function. x = 0:.1:1; y = [x; exp(x)]; fid = fopen('exp.txt','w'); fprintf(fid,'%6.2f %12.8f\n',y); fclose(fid); Examine the contents of exp.txt: type exp.txt MATLAB returns: 0.00 1.00000000 0.10 1.10517092 ... 1.00 2.71828183 See also fopen, fclose, fscanf, fread, fwrite, sprintf, disp. Other functions named fprintf Reference page in Help browser doc fprintf help printf printf not found. Use the Help browser search field to search the documentation, or type "help help" for help command options, such as help for methods. fprintf(0,'%2d %2d %f %f\n',[branch(ndxj(end:-1:1),1:2),branch(ndxj(end:-1:1),6),pctfr(ndxj(end:-1:1))]') {Error using fprintf Operation is not implemented for requested file identifier. } fprintf('%2d %2d %f %f\n',[branch(ndxj(end:-1:1),1:2),branch(ndxj(end:-1:1),6),pctfr(ndxj(end:-1:1))]') 28 54 700.000000 81.824987 6 10 660.000000 60.933369 10 20 500.000000 58.692256 35 37 600.000000 56.526111 18 61 600.000000 55.789298 41 51 600.000000 50.871299 54 56 600.000000 49.861859 41 47 600.000000 49.461275 54 53 600.000000 48.771586 1 2 700.000000 46.439326 3 5 1000.000000 46.367630 35 36 900.000000 46.200967 14 29 600.000000 45.772290 2 4 750.000000 43.343298 51 52 1000.000000 42.566356 37 43 600.000000 42.395128 56 57 800.000000 41.458178 31 30 600.000000 41.373482 14 15 800.000000 40.692984 62 63 1100.000000 40.087067 23 27 600.000000 39.597418 53 55 1300.000000 39.421356 22 47 600.000000 38.997911 60 62 600.000000 38.851153 6 9 600.000000 37.810550 6 8 600.000000 37.810550 25 27 600.000000 37.438985 17 28 600.000000 31.855231 19 18 600.000000 31.532719 19 18 600.000000 31.532719 30 29 600.000000 31.310302 30 29 600.000000 31.310302 35 38 600.000000 31.130478 24 23 600.000000 30.872958 20 22 600.000000 30.229708 23 22 600.000000 29.568652 23 22 600.000000 29.568652 45 43 600.000000 29.364817 44 43 600.000000 27.794729 58 59 2000.000000 26.365600 30 34 600.000000 25.724807 61 60 600.000000 25.622631 56 61 600.000000 24.951997 40 51 600.000000 23.822641 39 38 600.000000 23.671695 1 20 875.000000 23.060803 1 20 875.000000 23.060803 35 40 600.000000 22.578750 49 48 600.000000 22.011109 50 48 600.000000 19.988924 20 29 600.000000 19.984892 53 64 600.000000 18.304429 46 48 600.000000 16.590198 46 58 600.000000 16.590198 37 48 600.000000 16.384336 20 21 600.000000 16.322620 19 30 600.000000 15.984038 43 47 600.000000 15.850410 61 62 600.000000 15.090645 11 10 600.000000 15.004934 32 34 600.000000 14.576200 28 43 600.000000 12.948013 19 23 600.000000 11.330310 33 34 600.000000 10.985490 58 64 600.000000 10.146257 1 3 1000.000000 9.296446 10 13 600.000000 8.821485 7 6 600.000000 8.667778 7 14 605.000000 8.596144 38 48 600.000000 8.506108 18 21 600.000000 8.137357 17 16 600.000000 6.714291 16 21 600.000000 6.689165 11 13 600.000000 6.287570 42 41 600.000000 5.527250 12 13 600.000000 3.499517 42 40 600.000000 3.207717 26 27 600.000000 1.025676 [baseMVA, bus_brctgc, gen_brctgc, branch_brctgc] = runpf('esca64_n'); MATPOWER Version 6.0, 16-Dec-2016 -- AC Power Flow (Newton) Newton's method power flow converged in 4 iterations. Converged in 0.01 seconds ================================================================================ | System Summary | ================================================================================ How many? How much? P (MW) Q (MVAr) --------------------- ------------------- ------------- ----------------- Buses 64 Total Gen Capacity 6200.0 -2750.0 to 5300.0 Generators 11 On-line Capacity 6200.0 -2750.0 to 5300.0 Committed Gens 11 Generation (actual) 4197.4 983.1 Loads 28 Load 4144.9 1152.9 Fixed 28 Fixed 4144.9 1152.9 Dispatchable 0 Dispatchable -0.0 of -0.0 -0.0 Shunts 6 Shunt (inj) -0.0 263.1 Branches 78 Losses (I^2 * Z) 52.53 989.98 Transformers 38 Branch Charging (inj) - 896.7 Inter-ties 7 Total Inter-tie Flow 1960.5 178.3 Areas 3 Minimum Maximum ------------------------- -------------------------------- Voltage Magnitude 0.883 p.u. @ bus 31 1.065 p.u. @ bus 46 Voltage Angle -23.73 deg @ bus 25 9.17 deg @ bus 55 P Losses (I^2*R) - 13.53 MW @ line 18-61 Q Losses (I^2*X) - 143.72 MVAr @ line 18-61 ================================================================================ | Bus Data | ================================================================================ Bus Voltage Generation Load # Mag(pu) Ang(deg) P (MW) Q (MVAr) P (MW) Q (MVAr) ----- ------- -------- -------- -------- -------- -------- 1 1.002 -13.079 - - - - 2 1.002 -13.061 - - - - 3 0.997 -12.475 - - 389.04 68.62 4 1.010 -10.460 325.80 46.04 - - 5 1.010 -7.738 465.40 67.65 - - 6 1.013 -12.072 - - - - 7 1.013 -12.075 - - - - 8 1.000 -8.316 232.70 52.54 6.34 4.22 9 1.000 -8.316 232.70 52.54 6.34 4.22 10 1.002 -15.253 - - - - 11 1.008 -15.903 - - 87.00 41.80 12 1.020 -15.865 - - 20.72 3.40 13 1.006 -15.747 - - - - 14 1.011 -12.317 - - 101.74 37.92 15 1.025 -7.427 325.80 62.37 - - 16 1.001 -19.501 - - - - 17 1.006 -21.061 - - 184.66 35.08 18 0.994 -16.662 - - - - 19 0.941 -19.374 - - 328.42 88.26 20 0.998 -17.541 - - 384.98 37.72 21 0.999 -18.192 - - - - 22 1.003 -18.341 - - - - 23 0.945 -19.829 - - - - 24 0.902 -21.852 - - 158.76 95.44 25 0.916 -23.727 - - 209.50 81.06 26 0.925 -22.350 - - 5.70 2.32 27 0.925 -22.311 - - - - 28 1.015 -21.777 - - 376.42 2.84 29 0.993 -17.665 - - - - 30 0.936 -19.559 - - - - 31 0.883 -22.382 - - 209.62 132.98 32 0.928 -21.899 - - 86.88 10.04 33 0.928 -21.748 - - 64.16 15.10 34 0.929 -21.322 - - - - 35 1.058 -15.251 - - - - 36 1.050 -10.109 372.30 272.31 - - 37 1.054 -15.736 - - - - 38 1.053 -15.618 - - - - 39 1.018 -16.830 - - 133.66 48.04 40 1.057 -14.886 - - - - 41 1.049 -15.351 - - - - 42 1.029 -15.150 - - 4.86 50.30 43 1.033 -18.479 - - - - 44 1.022 -20.160 - - 159.98 47.10 45 1.026 -20.314 - - 174.24 26.14 46 1.065 -9.148 - - - - 47 1.035 -17.045 - - - - 48 1.053 -15.491 - - - - 49 1.047 -16.737 - - 129.16 27.56 50 1.047 -16.624 - - 117.48 24.14 51 1.056 -14.667 - - - - 52 1.015 -9.872 418.80 158.35 - - 53 1.047 4.094 - - 200.00 62.70 54 1.047 4.091 - - - - 55 1.025 9.173 511.90 44.70 - - 56 1.041 3.953 - - -107.66 73.70 57 1.020 8.131 325.80 23.79 - - 58 1.058 -4.750 - - 454.32 102.86 59 1.050 0.000* 544.14 120.78 - - 60 1.054 -3.332 - - 84.76 11.34 61 1.040 -4.402 - - 57.20 6.98 62 1.062 -1.557 - - 116.66 11.04 63 1.050 2.042 442.10 82.07 - - 64 1.061 -1.481 - - - - -------- -------- -------- -------- Total: 4197.44 983.15 4144.91 1152.91 ================================================================================ | Branch Data | ================================================================================ Brnch From To From Bus Injection To Bus Injection Loss (I^2 * Z) # Bus Bus P (MW) Q (MVAr) P (MW) Q (MVAr) P (MW) Q (MVAr) ----- ----- ----- -------- -------- -------- -------- -------- -------- 1 1 20 199.71 -5.07 -198.44 5.35 1.271 15.49 2 1 20 199.71 -5.07 -198.44 5.35 1.271 15.49 3 6 10 406.14 52.38 -404.82 -55.39 1.319 23.09 4 7 14 46.58 13.62 -46.56 -32.31 0.016 0.25 5 10 20 297.03 7.90 -296.33 -21.50 0.706 11.91 6 14 29 270.10 28.27 -268.48 -38.74 1.619 25.75 7 16 21 -274.37 44.16 274.91 -51.00 0.544 6.37 8 17 28 89.71 -86.94 -89.56 66.90 0.150 1.82 9 18 61 -645.91 -30.97 659.44 121.94 13.526 143.72 10 18 21 150.00 -58.68 -149.67 30.98 0.320 4.26 11 19 30 52.76 61.67 -52.67 -65.59 0.087 0.52 12 19 23 113.71 -84.46 -113.50 82.00 0.205 1.24 13 20 29 40.65 81.08 -40.62 -87.30 0.026 0.52 14 20 21 125.35 -31.93 -125.24 20.03 0.115 1.46 15 20 22 142.23 -76.07 -142.00 61.29 0.224 2.34 16 22 47 -119.47 -154.33 120.06 123.38 0.586 7.06 17 28 54 0.00 0.00 0.00 0.00 0.000 0.00 18 28 43 -286.86 -69.74 287.94 64.27 1.081 17.71 19 35 37 375.54 154.32 -375.24 -155.27 0.296 3.84 20 35 38 81.38 49.83 -81.33 -61.62 0.052 0.80 21 35 40 -84.62 19.91 84.67 -34.88 0.050 0.58 22 37 43 416.66 148.79 -415.23 -140.56 1.426 22.82 23 37 48 -41.41 6.48 41.43 -22.70 0.014 0.19 24 38 48 -52.44 10.33 52.46 -18.85 0.011 0.12 25 40 51 -97.12 16.44 97.16 -24.21 0.035 0.38 26 41 51 -321.19 -146.91 321.64 143.65 0.449 4.83 27 41 47 328.77 114.42 -327.76 -121.77 1.009 11.33 28 43 47 -207.38 -7.95 207.70 -1.61 0.322 5.20 29 46 58 -343.13 -11.03 344.20 -97.42 1.067 26.68 30 46 48 343.13 11.03 -340.72 -15.58 2.410 38.04 31 53 64 258.57 -83.57 -256.37 31.81 2.202 25.85 32 54 56 53.33 20.08 -53.10 -35.70 0.232 0.29 33 56 61 485.94 -38.01 -478.96 52.92 6.979 70.45 34 58 64 -255.79 -37.71 256.37 -31.81 0.585 14.63 35 1 2 -325.06 -30.86 325.06 30.97 0.000 0.11 36 7 6 -46.58 -13.62 46.58 13.62 0.000 0.00 37 54 53 -53.33 -20.08 53.33 20.08 0.000 0.00 38 1 3 -74.36 40.99 74.41 -40.00 0.050 0.99 39 3 5 -463.45 -28.62 465.40 67.65 1.951 39.03 40 2 4 -325.06 -30.97 325.80 46.04 0.743 15.07 41 6 8 -226.36 -33.00 226.36 48.32 0.000 15.32 42 6 9 -226.36 -33.00 226.36 48.32 0.000 15.32 43 11 10 -59.45 -66.77 59.50 68.38 0.057 1.61 44 10 13 48.29 -20.90 -48.27 21.39 0.014 0.49 45 11 13 -27.55 24.97 27.55 -24.83 0.000 0.14 46 12 13 -20.72 -3.40 20.72 3.44 0.000 0.04 47 14 15 -325.28 -33.88 325.80 62.37 0.524 28.49 48 17 16 -274.37 51.86 274.37 -44.16 -0.000 7.70 49 19 18 -247.44 -32.74 247.96 44.83 0.515 12.09 50 19 18 -247.44 -32.74 247.96 44.83 0.515 12.09 51 23 22 -130.57 -67.23 130.74 71.67 0.166 4.44 52 23 22 -130.57 -67.23 130.74 71.67 0.166 4.44 53 24 23 -158.76 -95.44 159.12 103.47 0.363 8.03 54 23 27 215.52 100.68 -215.21 -89.39 0.317 11.29 55 25 27 -209.50 -81.06 209.51 87.07 0.006 6.01 56 26 27 -5.70 -2.32 5.70 2.32 0.000 0.00 57 30 29 -154.33 -57.05 154.55 63.02 0.226 5.96 58 30 29 -154.33 -57.05 154.55 63.02 0.226 5.96 59 31 30 -209.62 -132.98 210.15 148.32 0.529 15.34 60 30 34 151.18 31.38 -151.04 -26.53 0.136 4.85 61 32 34 -86.88 -10.04 86.88 10.93 0.001 0.89 62 33 34 -64.16 -15.10 64.16 15.60 0.001 0.50 63 35 36 -372.30 -224.07 372.30 272.31 0.000 48.24 64 39 38 -133.66 -48.04 133.77 51.30 0.111 3.26 65 42 40 -12.45 -18.25 12.46 18.44 0.007 0.19 66 42 41 7.59 -32.05 -7.57 32.49 0.016 0.44 67 44 43 -159.98 -47.10 160.19 52.32 0.213 5.22 68 45 43 -174.24 -26.14 174.47 31.92 0.236 5.78 69 49 48 -129.16 -27.56 129.27 30.54 0.111 2.98 70 50 48 -117.48 -24.14 117.57 26.59 0.092 2.45 71 51 52 -418.80 -119.44 418.80 158.35 0.000 38.92 72 53 55 -511.90 0.79 511.90 44.70 0.000 45.49 73 56 57 -325.18 0.00 325.80 23.79 0.615 23.80 74 58 59 -542.73 -74.00 544.14 120.78 1.409 46.78 75 62 63 -440.63 -53.46 442.10 82.07 1.467 28.61 76 60 62 -232.63 -30.66 233.32 38.14 0.693 7.48 77 61 60 -147.49 -86.39 147.87 90.36 0.378 3.97 78 61 62 -90.18 -26.82 90.65 31.94 0.467 5.12 -------- -------- Total: 52.528 989.98 MVAfr_brctgc=sqrt(branch_brctgc(:,14).^2+branch_brctgc(:,15).^2) MVAfr_brctgc = 199.7735 199.7735 409.5077 48.5268 297.1393 271.5729 277.8999 124.9282 646.6531 161.0659 81.1594 141.6432 90.6987 129.3550 161.2915 195.1703 0 295.2150 406.0083 95.4238 86.9279 442.4259 41.9165 53.4517 98.5043 353.1964 348.1085 207.5296 343.3109 343.3109 271.7434 56.9835 487.4236 258.5507 326.5186 48.5268 56.9835 84.9110 464.3315 326.5287 228.7531 228.7531 89.3979 52.6140 37.1821 20.9971 327.0362 279.2274 249.5991 249.5991 146.8637 146.8637 185.2377 237.8798 224.6339 6.1541 164.5345 164.5345 248.2409 154.3990 87.4572 65.9129 434.5257 142.0302 22.0913 32.9376 166.7684 176.1889 132.0667 119.9335 435.4981 511.9006 325.1846 547.7536 443.8645 234.6425 170.9329 94.0875 [baseMVA, bus_gctgc, gen_gctgc, branch_gctgc] = runpf('esca64_n'); MATPOWER Version 6.0, 16-Dec-2016 -- AC Power Flow (Newton) Newton's method power flow converged in 4 iterations. Converged in 0.01 seconds ================================================================================ | System Summary | ================================================================================ How many? How much? P (MW) Q (MVAr) --------------------- ------------------- ------------- ----------------- Buses 64 Total Gen Capacity 6200.0 -2750.0 to 5300.0 Generators 11 On-line Capacity 5800.0 -2600.0 to 5000.0 Committed Gens 10 Generation (actual) 4185.7 773.8 Loads 28 Load 4144.9 1152.9 Fixed 28 Fixed 4144.9 1152.9 Dispatchable 0 Dispatchable -0.0 of -0.0 -0.0 Shunts 6 Shunt (inj) -0.0 273.7 Branches 78 Losses (I^2 * Z) 40.74 832.82 Transformers 38 Branch Charging (inj) - 938.2 Inter-ties 7 Total Inter-tie Flow 1955.2 221.1 Areas 3 Minimum Maximum ------------------------- -------------------------------- Voltage Magnitude 0.897 p.u. @ bus 31 1.071 p.u. @ bus 62 Voltage Angle -26.93 deg @ bus 25 0.00 deg @ bus 59 P Losses (I^2*R) - 5.53 MW @ line 28-54 Q Losses (I^2*X) - 113.75 MVAr @ line 58-59 ================================================================================ | Bus Data | ================================================================================ Bus Voltage Generation Load # Mag(pu) Ang(deg) P (MW) Q (MVAr) P (MW) Q (MVAr) ----- ------- -------- -------- -------- -------- -------- 1 1.004 -20.234 - - - - 2 1.004 -20.234 - - - - 3 0.998 -19.628 - - 389.04 68.62 4 1.004 -20.234 - - - - 5 1.010 -14.894 465.40 61.44 - - 6 1.017 -15.685 - - - - 7 1.017 -15.687 - - - - 8 1.000 -11.945 232.70 37.50 6.34 4.22 9 1.000 -11.945 232.70 37.50 6.34 4.22 10 1.010 -18.832 - - - - 11 1.016 -19.472 - - 87.00 41.80 12 1.028 -19.434 - - 20.72 3.40 13 1.014 -19.319 - - - - 14 1.015 -15.933 - - 101.74 37.92 15 1.025 -11.060 325.80 44.60 - - 16 1.018 -20.217 - - - - 17 1.021 -19.624 - - 184.66 35.08 18 1.013 -20.929 - - - - 19 0.956 -23.023 - - 328.42 88.26 20 1.009 -21.082 - - 384.98 37.72 21 1.015 -20.693 - - - - 22 1.015 -21.207 - - - - 23 0.959 -23.150 - - - - 24 0.916 -25.111 - - 158.76 95.44 25 0.931 -26.928 - - 209.50 81.06 26 0.940 -25.594 - - 5.70 2.32 27 0.940 -25.557 - - - - 28 1.031 -17.540 - - 376.42 2.84 29 1.005 -21.234 - - - - 30 0.949 -23.144 - - - - 31 0.897 -25.883 - - 209.62 132.98 32 0.942 -25.416 - - 86.88 10.04 33 0.942 -25.270 - - 64.16 15.10 34 0.943 -24.856 - - - - 35 1.066 -15.234 - - - - 36 1.050 -10.129 372.30 242.73 - - 37 1.062 -15.636 - - - - 38 1.061 -15.734 - - - - 39 1.026 -16.927 - - 133.66 48.04 40 1.064 -15.001 - - - - 41 1.057 -15.588 - - - - 42 1.036 -15.325 - - 4.86 50.30 43 1.044 -17.609 - - - - 44 1.034 -19.253 - - 159.98 47.10 45 1.038 -19.404 - - 174.24 26.14 46 1.070 -10.874 - - - - 47 1.045 -17.429 - - - - 48 1.061 -15.677 - - - - 49 1.055 -16.905 - - 129.16 27.56 50 1.055 -16.793 - - 117.48 24.14 51 1.063 -14.846 - - - - 52 1.015 -10.080 418.80 127.24 - - 53 1.040 -12.065 - - 200.00 62.70 54 1.040 -12.089 - - - - 55 1.025 -6.953 511.90 82.71 - - 56 1.051 -10.878 - - -107.66 73.70 57 1.020 -6.728 325.80 -22.26 - - 58 1.059 -7.510 - - 454.32 102.86 59 1.050 0.000* 858.16 138.03 - - 60 1.069 -13.198 - - 84.76 11.34 61 1.059 -14.259 - - 57.20 6.98 62 1.071 -11.434 - - 116.66 11.04 63 1.050 -7.841 442.10 24.36 - - 64 1.064 -9.259 - - - - -------- -------- -------- -------- Total: 4185.66 773.83 4144.91 1152.91 ================================================================================ | Branch Data | ================================================================================ Brnch From To From Bus Injection To Bus Injection Loss (I^2 * Z) # Bus Bus P (MW) Q (MVAr) P (MW) Q (MVAr) P (MW) Q (MVAr) ----- ----- ----- -------- -------- -------- -------- -------- -------- 1 1 20 37.18 -23.56 -37.13 8.79 0.052 0.63 2 1 20 37.18 -23.56 -37.13 8.79 0.052 0.63 3 6 10 405.37 26.21 -404.08 -30.19 1.282 22.44 4 7 14 47.35 10.40 -47.34 -29.27 0.015 0.24 5 10 20 296.29 -17.28 -295.61 2.89 0.688 11.61 6 14 29 270.88 7.95 -269.30 -19.61 1.581 25.16 7 16 21 107.56 26.88 -107.48 -39.52 0.086 1.01 8 17 28 -292.22 -63.15 293.15 51.86 0.930 11.24 9 18 61 -374.38 -107.69 378.96 101.52 4.577 48.63 10 18 21 -25.02 -23.91 25.02 -9.08 0.009 0.11 11 19 30 42.92 84.79 -42.80 -88.68 0.116 0.69 12 19 23 27.37 -57.64 -27.33 54.06 0.039 0.23 13 20 29 49.67 76.09 -49.64 -82.48 0.026 0.51 14 20 21 -82.39 -61.46 82.45 48.59 0.067 0.85 15 20 22 17.61 -72.82 -17.57 55.71 0.039 0.41 16 22 47 -330.21 -118.33 332.29 104.55 2.077 25.04 17 28 54 -671.81 19.66 677.34 17.00 5.529 64.22 18 28 43 2.24 -74.36 -2.20 51.33 0.048 0.79 19 35 37 315.23 128.82 -315.03 -131.02 0.205 2.67 20 35 38 110.51 44.18 -110.43 -55.76 0.078 1.20 21 35 40 -53.44 24.94 53.47 -40.41 0.024 0.28 22 37 43 306.73 125.92 -305.94 -128.09 0.794 12.70 23 37 48 8.29 5.09 -8.29 -21.74 0.002 0.02 24 38 48 -23.33 4.52 23.34 -13.27 0.002 0.03 25 40 51 -68.74 22.82 68.76 -30.87 0.019 0.21 26 41 51 -349.55 -123.86 350.04 120.92 0.489 5.26 27 41 47 359.94 90.46 -358.81 -96.82 1.125 12.63 28 43 47 -26.52 -7.23 26.53 -7.74 0.005 0.08 29 46 58 -263.28 -1.03 263.93 -118.84 0.645 16.13 30 46 48 263.28 1.03 -261.88 -22.04 1.402 22.13 31 53 64 -135.65 -83.49 136.31 13.95 0.663 7.79 32 54 56 -229.79 39.99 233.36 -51.57 3.568 4.38 33 56 61 199.48 -68.17 -198.29 23.11 1.198 12.09 34 58 64 136.48 -66.24 -136.31 -13.95 0.171 4.28 35 1 2 0.00 -0.00 -0.00 0.00 0.000 0.00 36 7 6 -47.35 -10.40 47.35 10.41 0.000 0.00 37 54 53 -447.55 -56.98 447.55 57.17 0.000 0.19 38 1 3 -74.36 47.13 74.42 -46.07 0.054 1.06 39 3 5 -463.46 -22.55 465.40 61.44 1.944 38.89 40 2 4 0.00 0.00 -0.00 -0.00 0.000 0.00 41 6 8 -226.36 -18.31 226.36 33.28 0.000 14.97 42 6 9 -226.36 -18.31 226.36 33.28 0.000 14.97 43 11 10 -59.46 -67.44 59.52 69.05 0.057 1.60 44 10 13 48.27 -21.58 -48.25 22.06 0.014 0.49 45 11 13 -27.53 25.64 27.53 -25.51 0.000 0.14 46 12 13 -20.72 -3.40 20.72 3.44 0.000 0.04 47 14 15 -325.29 -16.60 325.80 44.60 0.515 28.00 48 17 16 107.56 28.07 -107.56 -26.88 0.000 1.19 49 19 18 -199.35 -57.70 199.70 65.80 0.345 8.10 50 19 18 -199.35 -57.70 199.70 65.80 0.345 8.10 51 23 22 -173.65 -50.54 173.89 57.07 0.244 6.53 52 23 22 -173.65 -50.54 173.89 57.07 0.244 6.53 53 24 23 -158.76 -95.44 159.11 103.22 0.352 7.78 54 23 27 215.51 100.13 -215.20 -89.20 0.307 10.93 55 25 27 -209.50 -81.06 209.50 86.88 0.006 5.82 56 26 27 -5.70 -2.32 5.70 2.32 0.000 0.00 57 30 29 -159.25 -45.18 159.47 51.05 0.222 5.86 58 30 29 -159.25 -45.18 159.47 51.05 0.222 5.86 59 31 30 -209.62 -132.98 210.13 147.85 0.513 14.87 60 30 34 151.17 31.20 -151.04 -26.49 0.132 4.71 61 32 34 -86.88 -10.04 86.88 10.90 0.001 0.86 62 33 34 -64.16 -15.10 64.16 15.59 0.000 0.49 63 35 36 -372.30 -197.94 372.30 242.73 -0.000 44.79 64 39 38 -133.66 -48.04 133.77 51.25 0.109 3.21 65 42 40 -15.27 -17.38 15.27 17.59 0.008 0.21 66 42 41 10.41 -32.92 -10.39 33.39 0.018 0.48 67 44 43 -159.98 -47.10 160.19 52.20 0.208 5.10 68 45 43 -174.24 -26.14 174.47 31.79 0.231 5.65 69 49 48 -129.16 -27.56 129.27 30.49 0.110 2.93 70 50 48 -117.48 -24.14 117.57 26.55 0.090 2.41 71 51 52 -418.80 -90.05 418.80 127.24 0.000 37.19 72 53 55 -511.90 -36.38 511.90 82.71 0.000 46.32 73 56 57 -325.18 46.04 325.80 -22.26 0.615 23.78 74 58 59 -854.73 -24.28 858.16 138.03 3.426 113.75 75 62 63 -440.68 3.38 442.10 24.36 1.423 27.74 76 60 62 -232.59 7.46 233.26 -0.30 0.664 7.16 77 61 60 -147.53 -50.99 147.83 54.18 0.304 3.19 78 61 62 -90.34 -9.40 90.76 13.99 0.419 4.59 -------- -------- Total: 40.743 832.82 diary off