help runpf
runpf Runs a power flow.
[RESULTS, SUCCESS] = runpf(CASEDATA, MPOPT, FNAME, SOLVEDCASE)
Runs a power flow (full AC Newton's method by default), optionally
returning a RESULTS struct and SUCCESS flag.
Inputs (all are optional):
CASEDATA : either a MATPOWER case struct or a string containing
the name of the file with the case data (default is 'case9')
(see also CASEFORMAT and LOADCASE)
MPOPT : MATPOWER options struct to override default options
can be used to specify the solution algorithm, output options
termination tolerances, and more (see also MPOPTION).
FNAME : name of a file to which the pretty-printed output will
be appended
SOLVEDCASE : name of file to which the solved case will be saved
in MATPOWER case format (M-file will be assumed unless the
specified name ends with '.mat')
Outputs (all are optional):
RESULTS : results struct, with the following fields:
(all fields from the input MATPOWER case, i.e. bus, branch,
gen, etc., but with solved voltages, power flows, etc.)
order - info used in external <-> internal data conversion
et - elapsed time in seconds
success - success flag, 1 = succeeded, 0 = failed
SUCCESS : the success flag can additionally be returned as
a second output argument
Calling syntax options:
results = runpf;
results = runpf(casedata);
results = runpf(casedata, mpopt);
results = runpf(casedata, mpopt, fname);
results = runpf(casedata, mpopt, fname, solvedcase);
[results, success] = runpf(...);
Alternatively, for compatibility with previous versions of MATPOWER,
some of the results can be returned as individual output arguments:
[baseMVA, bus, gen, branch, success, et] = runpf(...);
If the pf.enforce_q_lims option is set to true (default is false) then, if
any generator reactive power limit is violated after running the AC power
flow, the corresponding bus is converted to a PQ bus, with Qg at the
limit, and the case is re-run. The voltage magnitude at the bus will
deviate from the specified value in order to satisfy the reactive power
limit. If the reference bus is converted to PQ, the first remaining PV
bus will be used as the slack bus for the next iteration. This may
result in the real power output at this generator being slightly off
from the specified values.
Examples:
results = runpf('case30');
results = runpf('case30', mpoption('pf.enforce_q_lims', 1));
See also rundcpf.
runpf('esca64_n')
MATPOWER Version 6.0, 16-Dec-2016 -- AC Power Flow (Newton)
Newton's method power flow converged in 4 iterations.
Converged in 0.14 seconds
================================================================================
| System Summary |
================================================================================
How many? How much? P (MW) Q (MVAr)
--------------------- ------------------- ------------- -----------------
Buses 64 Total Gen Capacity 6200.0 -2750.0 to 5300.0
Generators 11 On-line Capacity 6200.0 -2750.0 to 5300.0
Committed Gens 11 Generation (actual) 4181.0 631.4
Loads 28 Load 4144.9 1152.9
Fixed 28 Fixed 4144.9 1152.9
Dispatchable 0 Dispatchable -0.0 of -0.0 -0.0
Shunts 6 Shunt (inj) -0.0 274.9
Branches 78 Losses (I^2 * Z) 36.06 699.06
Transformers 38 Branch Charging (inj) - 945.7
Inter-ties 7 Total Inter-tie Flow 1951.5 257.6
Areas 3
Minimum Maximum
------------------------- --------------------------------
Voltage Magnitude 0.900 p.u. @ bus 31 1.078 p.u. @ bus 46
Voltage Angle -15.50 deg @ bus 25 2.15 deg @ bus 57
P Losses (I^2*R) - 5.84 MW @ line 54-56
Q Losses (I^2*X) - 46.27 MVAr @ line 28-54
================================================================================
| Bus Data |
================================================================================
Bus Voltage Generation Load
# Mag(pu) Ang(deg) P (MW) Q (MVAr) P (MW) Q (MVAr)
----- ------- -------- -------- -------- -------- --------
1 1.007 -4.582 - - - -
2 1.007 -4.563 - - - -
3 1.000 -3.975 - - 389.04 68.62
4 1.010 -1.961 325.80 13.13 - -
5 1.010 0.756 465.40 52.72 - -
6 1.018 -3.677 - - - -
7 1.018 -3.680 - - - -
8 1.000 0.059 232.70 34.24 6.34 4.22
9 1.000 0.059 232.70 34.24 6.34 4.22
10 1.012 -6.789 - - - -
11 1.018 -7.427 - - 87.00 41.80
12 1.030 -7.389 - - 20.72 3.40
13 1.016 -7.274 - - - -
14 1.016 -3.945 - - 101.74 37.92
15 1.025 0.924 325.80 40.84 - -
16 1.022 -9.359 - - - -
17 1.025 -9.406 - - 184.66 35.08
18 1.017 -9.739 - - - -
19 0.959 -11.595 - - 328.42 88.26
20 1.012 -9.004 - - 384.98 37.72
21 1.018 -9.303 - - - -
22 1.019 -9.856 - - - -
23 0.962 -11.746 - - - -
24 0.919 -13.692 - - 158.76 95.44
25 0.935 -15.496 - - 209.50 81.06
26 0.943 -14.172 - - 5.70 2.32
27 0.944 -14.135 - - - -
28 1.036 -8.181 - - 376.42 2.84
29 1.007 -9.306 - - - -
30 0.953 -11.501 - - - -
31 0.900 -14.222 - - 209.62 132.98
32 0.945 -13.758 - - 86.88 10.04
33 0.945 -13.613 - - 64.16 15.10
34 0.946 -13.202 - - - -
35 1.070 -6.651 - - - -
36 1.050 -1.563 372.30 228.44 - -
37 1.066 -7.055 - - - -
38 1.065 -7.491 - - - -
39 1.030 -8.674 - - 133.66 48.04
40 1.067 -6.098 - - - -
41 1.060 -6.376 - - - -
42 1.040 -6.269 - - 4.86 50.30
43 1.049 -8.446 - - - -
44 1.038 -10.077 - - 159.98 47.10
45 1.042 -10.226 - - 174.24 26.14
46 1.078 -5.851 - - - -
47 1.049 -7.804 - - - -
48 1.065 -7.608 - - - -
49 1.059 -8.825 - - 129.16 27.56
50 1.060 -8.714 - - 117.48 24.14
51 1.066 -5.790 - - - -
52 1.015 -1.039 418.80 112.64 - -
53 1.042 -3.550 - - 200.00 62.70
54 1.042 -3.565 - - - -
55 1.025 1.551 511.90 70.32 - -
56 1.056 -1.990 - - -107.66 73.70
57 1.020 2.149 325.80 -41.23 - -
58 1.065 -4.585 - - 454.32 102.86
59 1.050 0.000* 527.67 73.96 - -
60 1.072 -3.216 - - 84.76 11.34
61 1.064 -4.275 - - 57.20 6.98
62 1.073 -1.455 - - 116.66 11.04
63 1.050 2.137 442.10 12.05 - -
64 1.068 -4.250 - - - -
-------- -------- -------- --------
Total: 4180.97 631.35 4144.91 1152.91
================================================================================
| Branch Data |
================================================================================
Brnch From To From Bus Injection To Bus Injection Loss (I^2 * Z)
# Bus Bus P (MW) Q (MVAr) P (MW) Q (MVAr) P (MW) Q (MVAr)
----- ----- ----- -------- -------- -------- -------- -------- --------
1 1 20 199.72 -28.78 -198.45 28.81 1.273 15.51
2 1 20 199.72 -28.78 -198.45 28.81 1.273 15.51
3 6 10 401.64 20.42 -400.39 -24.98 1.253 21.93
4 7 14 51.08 9.78 -51.06 -28.65 0.017 0.28
5 10 20 292.60 -22.49 -291.93 7.67 0.669 11.30
6 14 29 274.61 3.66 -272.99 -14.88 1.617 25.73
7 16 21 -8.62 39.20 8.63 -52.75 0.015 0.17
8 17 28 -176.04 -74.43 176.41 56.13 0.366 4.42
9 18 61 -311.95 -121.40 315.23 101.10 3.288 34.94
10 18 21 -45.64 -17.34 45.67 -15.65 0.026 0.35
11 19 30 -5.85 95.73 5.97 -99.63 0.117 0.71
12 19 23 34.45 -58.61 -34.41 55.03 0.044 0.26
13 20 29 94.89 73.31 -94.84 -79.38 0.044 0.86
14 20 21 54.36 -81.47 -54.30 68.41 0.058 0.74
15 20 22 154.60 -94.85 -154.32 80.11 0.275 2.88
16 22 47 -186.35 -141.50 187.22 112.80 0.863 10.40
17 28 54 -572.55 16.18 576.53 2.35 3.983 46.27
18 28 43 19.72 -75.14 -19.67 52.01 0.053 0.87
19 35 37 318.52 116.50 -318.32 -118.77 0.202 2.63
20 35 38 184.09 31.63 -183.90 -41.66 0.185 2.84
21 35 40 -130.31 37.05 130.42 -51.55 0.116 1.36
22 37 43 220.36 127.06 -219.89 -134.53 0.470 7.51
23 37 48 97.96 -8.29 -97.89 -7.57 0.068 0.95
24 38 48 50.13 -9.56 -50.12 0.81 0.009 0.10
25 40 51 -138.81 34.08 138.89 -41.60 0.073 0.78
26 41 51 -279.59 -122.46 279.91 117.73 0.328 3.53
27 41 47 283.09 89.04 -282.37 -100.08 0.720 8.08
28 43 47 -95.09 -1.39 95.16 -12.72 0.066 1.07
29 46 58 -99.04 -9.99 99.15 -124.89 0.115 2.88
30 46 48 99.04 9.99 -98.82 -50.24 0.215 3.39
31 53 64 27.27 -106.39 -27.09 30.61 0.175 2.05
32 54 56 -291.89 65.58 297.74 -74.47 5.842 7.18
33 56 61 135.10 -64.51 -134.54 12.56 0.561 5.66
34 58 64 -27.08 -54.52 27.09 -30.61 0.008 0.19
35 1 2 -325.07 1.78 325.07 -1.67 0.000 0.10
36 7 6 -51.08 -9.78 51.08 9.78 -0.000 0.00
37 54 53 -284.63 -67.93 284.63 68.01 0.000 0.08
38 1 3 -74.37 55.78 74.43 -54.61 0.060 1.18
39 3 5 -463.46 -14.01 465.40 52.72 1.935 38.71
40 2 4 -325.07 1.67 325.80 13.13 0.730 14.80
41 6 8 -226.36 -15.10 226.36 30.02 0.000 14.91
42 6 9 -226.36 -15.10 226.36 30.02 0.000 14.91
43 11 10 -59.47 -67.59 59.53 69.20 0.057 1.60
44 10 13 48.26 -21.73 -48.25 22.21 0.014 0.49
45 11 13 -27.53 25.79 27.53 -25.66 0.000 0.14
46 12 13 -20.72 -3.40 20.72 3.44 0.000 0.04
47 14 15 -325.29 -12.93 325.80 40.84 0.513 27.91
48 17 16 -8.62 39.35 8.62 -39.20 0.000 0.15
49 19 18 -178.51 -62.69 178.79 69.37 0.284 6.68
50 19 18 -178.51 -62.69 178.79 69.37 0.284 6.68
51 23 22 -170.11 -50.39 170.34 56.63 0.233 6.24
52 23 22 -170.11 -50.39 170.34 56.63 0.233 6.24
53 24 23 -158.76 -95.44 159.11 103.17 0.349 7.73
54 23 27 215.51 100.01 -215.20 -89.16 0.305 10.85
55 25 27 -209.50 -81.06 209.50 86.84 0.006 5.78
56 26 27 -5.70 -2.32 5.70 2.32 0.000 0.00
57 30 29 -183.63 -39.63 183.92 47.13 0.284 7.50
58 30 29 -183.63 -39.63 183.92 47.13 0.284 7.50
59 31 30 -209.62 -132.98 210.13 147.74 0.509 14.76
60 30 34 151.17 31.16 -151.04 -26.48 0.131 4.67
61 32 34 -86.88 -10.04 86.88 10.90 0.001 0.86
62 33 34 -64.16 -15.10 64.16 15.59 0.000 0.49
63 35 36 -372.30 -185.17 372.30 228.44 0.000 43.26
64 39 38 -133.66 -48.04 133.77 51.22 0.108 3.18
65 42 40 -8.38 -17.32 8.39 17.47 0.005 0.14
66 42 41 3.52 -32.98 -3.51 33.41 0.016 0.44
67 44 43 -159.98 -47.10 160.19 52.16 0.207 5.06
68 45 43 -174.24 -26.14 174.47 31.75 0.229 5.61
69 49 48 -129.16 -27.56 129.27 30.47 0.109 2.91
70 50 48 -117.48 -24.14 117.57 26.53 0.090 2.39
71 51 52 -418.80 -76.13 418.80 112.64 0.000 36.51
72 53 55 -511.90 -24.33 511.90 70.32 0.000 46.00
73 56 57 -325.18 65.28 325.80 -41.23 0.622 24.05
74 58 59 -526.39 -31.22 527.67 73.96 1.288 42.75
75 62 63 -440.68 15.63 442.10 12.05 1.419 27.68
76 60 62 -232.58 15.73 233.24 -8.58 0.662 7.14
77 61 60 -147.52 -43.26 147.82 46.33 0.292 3.07
78 61 62 -90.37 -5.60 90.78 10.13 0.413 4.53
-------- --------
Total: 36.062 699.06
help mpoption
mpoption Used to set and retrieve a MATPOWER options struct.
OPT = mpoption
Returns the default options struct.
OPT = mpoption(OVERRIDES)
Returns the default options struct, with some fields overridden
by values from OVERRIDES, which can be a struct or the name of
a function that returns a struct.
OPT = mpoption(NAME1, VALUE1, NAME2, VALUE2, ...)
Same as previous, except override options are specified by NAME,
VALUE pairs. This can be used to set any part of the options
struct. The names can be individual fields or multi-level field
names with embedded periods. The values can be scalars or structs.
For backward compatibility, the NAMES and VALUES may correspond
to old-style MATPOWER option names (elements in the old-style
options vector) as well.
OPT = mpoption(OPT0)
Converts an old-style options vector OPT0 into the corresponding
options struct. If OPT0 is an options struct it does nothing.
OPT = mpoption(OPT0, OVERRIDES)
Applies overrides to an existing set of options, OPT0, which
can be an old-style options vector or an options struct.
OPT = mpoption(OPT0, NAME1, VALUE1, NAME2, VALUE2, ...)
Same as above except it uses the old-style options vector OPT0
as a base instead of the old default options vector.
OPT_VECTOR = mpoption(OPT, [])
Creates and returns an old-style options vector from an
options struct OPT.
Note: The use of old-style MATPOWER options vectors and their
names and values has been deprecated and will be removed
in a future version of MATPOWER. Until then, all uppercase
option names are not permitted for new top-level options.
Examples:
mpopt = mpoption('pf.alg', 'FDXB', 'pf.tol', 1e-4);
mpopt = mpoption(mpopt, 'opf.dc.solver', 'CPLEX', 'verbose', 2);
The currently defined options are as follows:
name default description [options]
---------------------- --------- ----------------------------------
Model options:
model 'AC' AC vs. DC power flow model
[ 'AC' - use nonlinear AC model & corresponding algorithms/options ]
[ 'DC' - use linear DC model & corresponding algorithms/options ]
Power Flow options:
pf.alg 'NR' AC power flow algorithm
[ 'NR' - Newton's method ]
[ 'FDXB' - Fast-Decoupled (XB version) ]
[ 'FDBX' - Fast-Decoupled (BX version) ]
[ 'GS' - Gauss-Seidel ]
pf.tol 1e-8 termination tolerance on per unit
P & Q mismatch
pf.nr.max_it 10 maximum number of iterations for
Newton's method
pf.fd.max_it 30 maximum number of iterations for
fast decoupled method
pf.gs.max_it 1000 maximum number of iterations for
Gauss-Seidel method
pf.enforce_q_lims 0 enforce gen reactive power limits at
expense of |V|
[ 0 - do NOT enforce limits ]
[ 1 - enforce limits, simultaneous bus type conversion ]
[ 2 - enforce limits, one-at-a-time bus type conversion ]
Continuation Power Flow options:
cpf.parameterization 3 choice of parameterization
[ 1 - natural ]
[ 2 - arc length ]
[ 3 - pseudo arc length ]
cpf.stop_at 'NOSE' determins stopping criterion
[ 'NOSE' - stop when nose point is reached ]
[ 'FULL' - trace full nose curve ]
[ - stop upon reaching specified target lambda value ]
cpf.enforce_p_lims 0 enforce gen active power limits
[ 0 - do NOT enforce limits ]
[ 1 - enforce limits, simultaneous bus type conversion ]
cpf.enforce_q_lims 0 enforce gen reactive power limits at
expense of |V|
[ 0 - do NOT enforce limits ]
[ 1 - enforce limits, simultaneous bus type conversion ]
cpf.step 0.05 continuation power flow step size
cpf.adapt_step 0 toggle adaptive step size feature
[ 0 - adaptive step size disabled ]
[ 1 - adaptive step size enabled ]
cpf.step_min 1e-4 minimum allowed step size
cpf.step_max 0.2 maximum allowed step size
cpf.adapt_step_damping 0.7 damping factor for adaptive step
sizing
cpf.adapt_step_tol 1e-3 tolerance for adaptive step sizing
cpf.target_lam_tol 1e-5 tolerance for target lambda detection
cpf.nose_tol 1e-5 tolerance for nose point detection (pu)
cpf.p_lims_tol 0.01 tolerance for generator active
power limit enforcement (MW)
cpf.q_lims_tol 0.01 tolerance for generator reactive
power limit enforcement (MVAR)
cpf.plot.level 0 control plotting of noze curve
[ 0 - do not plot nose curve ]
[ 1 - plot when completed ]
[ 2 - plot incrementally at each iteration ]
[ 3 - same as 2, with 'pause' at each iteration ]
cpf.plot.bus index of bus whose voltage is to be
plotted
cpf.user_callback string containing the name of a user
callback function, or struct with
function name, and optional priority
and/or args, or cell array of such
strings and/or structs, see
'help cpf_default_callback' for details
Optimal Power Flow options:
name default description [options]
---------------------- --------- ----------------------------------
opf.ac.solver 'DEFAULT' AC optimal power flow solver
[ 'DEFAULT' - choose solver based on availability in the following ]
[ order: 'PDIPM', 'MIPS' ]
[ 'MIPS' - MIPS, MATPOWER Interior Point Solver, primal/dual ]
[ interior point method (pure Matlab) ]
[ 'FMINCON' - MATLAB Optimization Toolbox, FMINCON ]
[ 'IPOPT' - IPOPT, requires MEX interface to IPOPT solver ]
[ available from: ]
[ http://www.coin-or.org/projects/Ipopt.xml ]
[ 'KNITRO' - KNITRO, requires MATLAB Optimization Toolbox and ]
[ KNITRO libraries available from: http://www.ziena.com/]
[ 'MINOPF' - MINOPF, MINOS-based solver, requires optional ]
[ MEX-based MINOPF package, available from: ]
[ http://www.pserc.cornell.edu/minopf/ ]
[ 'PDIPM' - PDIPM, primal/dual interior point method, requires ]
[ optional MEX-based TSPOPF package, available from: ]
[ http://www.pserc.cornell.edu/tspopf/ ]
[ 'SDPOPF' - SDPOPF, solver based on semidefinite relaxation of ]
[ OPF problem, requires optional packages: ]
[ SDP_PF, available in extras/sdp_pf ]
[ YALMIP, available from: ]
[ http://users.isy.liu.se/johanl/yalmip/ ]
[ SDP solver such as SeDuMi, available from: ]
[ http://sedumi.ie.lehigh.edu/ ]
[ 'TRALM' - TRALM, trust region based augmented Langrangian ]
[ method, requires TSPOPF (see 'PDIPM') ]
opf.dc.solver 'DEFAULT' DC optimal power flow solver
[ 'DEFAULT' - choose solver based on availability in the following ]
[ order: 'GUROBI', 'CPLEX', 'MOSEK', 'OT', ]
[ 'GLPK' (linear costs only), 'BPMPD', 'MIPS' ]
[ 'MIPS' - MIPS, MATPOWER Interior Point Solver, primal/dual ]
[ interior point method (pure Matlab) ]
[ 'BPMPD' - BPMPD, requires optional MEX-based BPMPD_MEX package ]
[ available from: http://www.pserc.cornell.edu/bpmpd/ ]
[ 'CLP' - CLP, requires interface to COIN-OP LP solver ]
[ available from:http://www.coin-or.org/projects/Clp.xml]
[ 'CPLEX' - CPLEX, requires CPLEX solver available from: ]
[ http://www.ibm.com/software/integration/ ... ]
[ ... optimization/cplex-optimizer/ ]
[ 'GLPK' - GLPK, requires interface to GLPK solver ]
[ available from: http://www.gnu.org/software/glpk/ ]
[ (GLPK does not work with quadratic cost functions) ]
[ 'GUROBI' - GUROBI, requires Gurobi optimizer (v. 5+) ]
[ available from: http://www.gurobi.com/ ]
[ 'IPOPT' - IPOPT, requires MEX interface to IPOPT solver ]
[ available from: ]
[ http://www.coin-or.org/projects/Ipopt.xml ]
[ 'MOSEK' - MOSEK, requires Matlab interface to MOSEK solver ]
[ available from: http://www.mosek.com/ ]
[ 'OT' - MATLAB Optimization Toolbox, QUADPROG, LINPROG ]
opf.violation 5e-6 constraint violation tolerance
opf.use_vg 0 respect gen voltage setpt [ 0-1 ]
[ 0 - use specified bus Vmin & Vmax, and ignore gen Vg ]
[ 1 - replace specified bus Vmin & Vmax by corresponding gen Vg ]
[ between 0 and 1 - use a weighted average of the 2 options ]
opf.flow_lim 'S' quantity limited by branch flow
constraints
[ 'S' - apparent power flow (limit in MVA) ]
[ 'P' - active power flow (limit in MW) ]
[ 'I' - current magnitude (limit in MVA at 1 p.u. voltage) ]
opf.ignore_angle_lim 0 angle diff limits for branches
[ 0 - include angle difference limits, if specified ]
[ 1 - ignore angle difference limits even if specified ]
opf.init_from_mpc -1 specify whether to use current state
in MATPOWER case to initialize OPF
(currently supported only for Ipopt,
Knitro and MIPS solvers)
[ -1 - MATPOWER decides, based on solver/algorithm ]
[ 0 - ignore current state when initializing OPF ]
[ 1 - use current state to initialize OPF ]
opf.return_raw_der 0 for AC OPF, return constraint and
derivative info in results.raw
(in fields g, dg, df, d2f) [ 0 or 1 ]
Output options:
name default description [options]
---------------------- --------- ----------------------------------
verbose 1 amount of progress info printed
[ 0 - print no progress info ]
[ 1 - print a little progress info ]
[ 2 - print a lot of progress info ]
[ 3 - print all progress info ]
out.all -1 controls pretty-printing of results
[ -1 - individual flags control what prints ]
[ 0 - do not print anything (overrides individual flags, ignored ]
[ for files specified as FNAME arg to runpf(), runopf(), etc.)]
[ 1 - print everything (overrides individual flags) ]
out.sys_sum 1 print system summary [ 0 or 1 ]
out.area_sum 0 print area summaries [ 0 or 1 ]
out.bus 1 print bus detail [ 0 or 1 ]
out.branch 1 print branch detail [ 0 or 1 ]
out.gen 0 print generator detail [ 0 or 1 ]
out.lim.all -1 controls constraint info output
[ -1 - individual flags control what constraint info prints ]
[ 0 - no constraint info (overrides individual flags) ]
[ 1 - binding constraint info (overrides individual flags) ]
[ 2 - all constraint info (overrides individual flags) ]
out.lim.v 1 control voltage limit info
[ 0 - do not print ]
[ 1 - print binding constraints only ]
[ 2 - print all constraints ]
[ (same options for OUT_LINE_LIM, OUT_PG_LIM, OUT_QG_LIM) ]
out.lim.line 1 control line flow limit info
out.lim.pg 1 control gen active power limit info
out.lim.qg 1 control gen reactive pwr limit info
out.force 0 print results even if success
flag = 0 [ 0 or 1 ]
out.suppress_detail -1 suppress all output but system summary
[ -1 - suppress details for large systems (> 500 buses) ]
[ 0 - do not suppress any output specified by other flags ]
[ 1 - suppress all output except system summary section ]
[ (overrides individual flags, but not out.all = 1) ]
Solver specific options:
name default description [options]
----------------------- --------- ----------------------------------
MIPS:
mips.linsolver '' linear system solver
[ '' or '\' build-in backslash \ operator (e.g. x = A \ b) ]
[ 'PARDISO' PARDISO solver (if available) ]
mips.feastol 0 feasibility (equality) tolerance
(set to opf.violation by default)
mips.gradtol 1e-6 gradient tolerance
mips.comptol 1e-6 complementary condition
(inequality) tolerance
mips.costtol 1e-6 optimality tolerance
mips.max_it 150 maximum number of iterations
mips.step_control 0 enable step-size cntrl [ 0 or 1 ]
mips.sc.red_it 20 maximum number of reductions per
iteration with step control
mips.xi 0.99995 constant used in alpha updates*
mips.sigma 0.1 centering parameter*
mips.z0 1 used to initialize slack variables*
mips.alpha_min 1e-8 returns "Numerically Failed" if
either alpha parameter becomes
smaller than this value*
mips.rho_min 0.95 lower bound on rho_t*
mips.rho_max 1.05 upper bound on rho_t*
mips.mu_threshold 1e-5 KT multipliers smaller than this
value for non-binding constraints
are forced to zero
mips.max_stepsize 1e10 returns "Numerically Failed" if the
2-norm of the reduced Newton step
exceeds this value*
* See the corresponding Appendix in the manual for details.
CPLEX:
cplex.lpmethod 0 solution algorithm for LP problems
[ 0 - automatic: let CPLEX choose ]
[ 1 - primal simplex ]
[ 2 - dual simplex ]
[ 3 - network simplex ]
[ 4 - barrier ]
[ 5 - sifting ]
[ 6 - concurrent (dual, barrier, and primal) ]
cplex.qpmethod 0 solution algorithm for QP problems
[ 0 - automatic: let CPLEX choose ]
[ 1 - primal simplex optimizer ]
[ 2 - dual simplex optimizer ]
[ 3 - network optimizer ]
[ 4 - barrier optimizer ]
cplex.opts see CPLEX_OPTIONS for details
cplex.opt_fname see CPLEX_OPTIONS for details
cplex.opt 0 see CPLEX_OPTIONS for details
FMINCON:
fmincon.alg 4 algorithm used by fmincon() for OPF
for Opt Toolbox 4 and later
[ 1 - active-set (not suitable for large problems) ]
[ 2 - interior-point, w/default 'bfgs' Hessian approx ]
[ 3 - interior-point, w/ 'lbfgs' Hessian approx ]
[ 4 - interior-point, w/exact user-supplied Hessian ]
[ 5 - interior-point, w/Hessian via finite differences ]
[ 6 - sqp (not suitable for large problems) ]
fmincon.tol_x 1e-4 termination tol on x
fmincon.tol_f 1e-4 termination tol on f
fmincon.max_it 0 maximum number of iterations
[ 0 => default ]
GUROBI:
gurobi.method 0 solution algorithm (Method)
[ -1 - automatic, let Gurobi decide ]
[ 0 - primal simplex ]
[ 1 - dual simplex ]
[ 2 - barrier ]
[ 3 - concurrent (LP only) ]
[ 4 - deterministic concurrent (LP only) ]
gurobi.timelimit Inf maximum time allowed (TimeLimit)
gurobi.threads 0 max number of threads (Threads)
gurobi.opts see GUROBI_OPTIONS for details
gurobi.opt_fname see GUROBI_OPTIONS for details
gurobi.opt 0 see GUROBI_OPTIONS for details
IPOPT:
ipopt.opts see IPOPT_OPTIONS for details
ipopt.opt_fname see IPOPT_OPTIONS for details
ipopt.opt 0 see IPOPT_OPTIONS for details
KNITRO:
knitro.tol_x 1e-4 termination tol on x
knitro.tol_f 1e-4 termination tol on f
knitro.opt_fname name of user-supplied native
KNITRO options file that overrides
all other options
knitro.opt 0 if knitro.opt_fname is empty and
knitro.opt is a non-zero integer N
then knitro.opt_fname is auto-
generated as:
'knitro_user_options_N.txt'
LINPROG:
linprog LINPROG options passed to
OPTIMOPTIONS or OPTIMSET.
see LINPROG in the Optimization
Toolbox for details
MINOPF:
minopf.feastol 0 (1e-3) primal feasibility tolerance
(set to opf.violation by default)
minopf.rowtol 0 (1e-3) row tolerance
minopf.xtol 0 (1e-4) x tolerance
minopf.majdamp 0 (0.5) major damping parameter
minopf.mindamp 0 (2.0) minor damping parameter
minopf.penalty 0 (1.0) penalty parameter
minopf.major_it 0 (200) major iterations
minopf.minor_it 0 (2500) minor iterations
minopf.max_it 0 (2500) iterations limit
minopf.verbosity -1 amount of progress info printed
[ -1 - controlled by 'verbose' option ]
[ 0 - print nothing ]
[ 1 - print only termination status message ]
[ 2 - print termination status and screen progress ]
[ 3 - print screen progress, report file (usually fort.9) ]
minopf.core 0 (1200*nb + 2*(nb+ng)^2) memory allocation
minopf.supbasic_lim 0 (2*nb + 2*ng) superbasics limit
minopf.mult_price 0 (30) multiple price
MOSEK:
mosek.lp_alg 0 solution algorithm
(MSK_IPAR_OPTIMIZER)
for MOSEK 8.x ... (see MOSEK_SYMBCON for a "better way")
[ 0 - automatic: let MOSEK choose ]
[ 1 - dual simplex ]
[ 2 - automatic: let MOSEK choose ]
[ 3 - automatic simplex (MOSEK chooses which simplex method) ]
[ 4 - interior point ]
[ 6 - primal simplex ]
mosek.max_it 0 (400) interior point max iterations
(MSK_IPAR_INTPNT_MAX_ITERATIONS)
mosek.gap_tol 0 (1e-8) interior point relative gap tol
(MSK_DPAR_INTPNT_TOL_REL_GAP)
mosek.max_time 0 (-1) maximum time allowed
(MSK_DPAR_OPTIMIZER_MAX_TIME)
mosek.num_threads 0 (1) max number of threads
(MSK_IPAR_INTPNT_NUM_THREADS)
mosek.opts see MOSEK_OPTIONS for details
mosek.opt_fname see MOSEK_OPTIONS for details
mosek.opt 0 see MOSEK_OPTIONS for details
QUADPROG:
quadprog QUADPROG options passed to
OPTIMOPTIONS or OPTIMSET.
see QUADPROG in the Optimization
Toolbox for details
TSPOPF:
pdipm.feastol 0 feasibility (equality) tolerance
(set to opf.violation by default)
pdipm.gradtol 1e-6 gradient tolerance
pdipm.comptol 1e-6 complementary condition
(inequality) tolerance
pdipm.costtol 1e-6 optimality tolerance
pdipm.max_it 150 maximum number of iterations
pdipm.step_control 0 enable step-size cntrl [ 0 or 1 ]
pdipm.sc.red_it 20 maximum number of reductions per
iteration with step control
pdipm.sc.smooth_ratio 0.04 piecewise linear curve smoothing
ratio
tralm.feastol 0 feasibility tolerance
(set to opf.violation by default)
tralm.primaltol 5e-4 primal variable tolerance
tralm.dualtol 5e-4 dual variable tolerance
tralm.costtol 1e-5 optimality tolerance
tralm.major_it 40 maximum number of major iterations
tralm.minor_it 40 maximum number of minor iterations
tralm.smooth_ratio 0.04 piecewise linear curve smoothing
ratio
Experimental Options:
exp.sys_wide_zip_loads.pw 1 x 3 vector of active load fraction
to be modeled as constant power,
constant current and constant
impedance, respectively, where
means use [1 0 0]
exp.sys_wide_zip_loads.qw same for reactive power, where
means use same value as
for 'pw'
[baseMVA, bus, gen, branch] = runpf('esca64_n');
MATPOWER Version 6.0, 16-Dec-2016 -- AC Power Flow (Newton)
Newton's method power flow converged in 4 iterations.
Converged in 0.02 seconds
================================================================================
| System Summary |
================================================================================
How many? How much? P (MW) Q (MVAr)
--------------------- ------------------- ------------- -----------------
Buses 64 Total Gen Capacity 6200.0 -2750.0 to 5300.0
Generators 11 On-line Capacity 6200.0 -2750.0 to 5300.0
Committed Gens 11 Generation (actual) 4181.0 631.4
Loads 28 Load 4144.9 1152.9
Fixed 28 Fixed 4144.9 1152.9
Dispatchable 0 Dispatchable -0.0 of -0.0 -0.0
Shunts 6 Shunt (inj) -0.0 274.9
Branches 78 Losses (I^2 * Z) 36.06 699.06
Transformers 38 Branch Charging (inj) - 945.7
Inter-ties 7 Total Inter-tie Flow 1951.5 257.6
Areas 3
Minimum Maximum
------------------------- --------------------------------
Voltage Magnitude 0.900 p.u. @ bus 31 1.078 p.u. @ bus 46
Voltage Angle -15.50 deg @ bus 25 2.15 deg @ bus 57
P Losses (I^2*R) - 5.84 MW @ line 54-56
Q Losses (I^2*X) - 46.27 MVAr @ line 28-54
================================================================================
| Bus Data |
================================================================================
Bus Voltage Generation Load
# Mag(pu) Ang(deg) P (MW) Q (MVAr) P (MW) Q (MVAr)
----- ------- -------- -------- -------- -------- --------
1 1.007 -4.582 - - - -
2 1.007 -4.563 - - - -
3 1.000 -3.975 - - 389.04 68.62
4 1.010 -1.961 325.80 13.13 - -
5 1.010 0.756 465.40 52.72 - -
6 1.018 -3.677 - - - -
7 1.018 -3.680 - - - -
8 1.000 0.059 232.70 34.24 6.34 4.22
9 1.000 0.059 232.70 34.24 6.34 4.22
10 1.012 -6.789 - - - -
11 1.018 -7.427 - - 87.00 41.80
12 1.030 -7.389 - - 20.72 3.40
13 1.016 -7.274 - - - -
14 1.016 -3.945 - - 101.74 37.92
15 1.025 0.924 325.80 40.84 - -
16 1.022 -9.359 - - - -
17 1.025 -9.406 - - 184.66 35.08
18 1.017 -9.739 - - - -
19 0.959 -11.595 - - 328.42 88.26
20 1.012 -9.004 - - 384.98 37.72
21 1.018 -9.303 - - - -
22 1.019 -9.856 - - - -
23 0.962 -11.746 - - - -
24 0.919 -13.692 - - 158.76 95.44
25 0.935 -15.496 - - 209.50 81.06
26 0.943 -14.172 - - 5.70 2.32
27 0.944 -14.135 - - - -
28 1.036 -8.181 - - 376.42 2.84
29 1.007 -9.306 - - - -
30 0.953 -11.501 - - - -
31 0.900 -14.222 - - 209.62 132.98
32 0.945 -13.758 - - 86.88 10.04
33 0.945 -13.613 - - 64.16 15.10
34 0.946 -13.202 - - - -
35 1.070 -6.651 - - - -
36 1.050 -1.563 372.30 228.44 - -
37 1.066 -7.055 - - - -
38 1.065 -7.491 - - - -
39 1.030 -8.674 - - 133.66 48.04
40 1.067 -6.098 - - - -
41 1.060 -6.376 - - - -
42 1.040 -6.269 - - 4.86 50.30
43 1.049 -8.446 - - - -
44 1.038 -10.077 - - 159.98 47.10
45 1.042 -10.226 - - 174.24 26.14
46 1.078 -5.851 - - - -
47 1.049 -7.804 - - - -
48 1.065 -7.608 - - - -
49 1.059 -8.825 - - 129.16 27.56
50 1.060 -8.714 - - 117.48 24.14
51 1.066 -5.790 - - - -
52 1.015 -1.039 418.80 112.64 - -
53 1.042 -3.550 - - 200.00 62.70
54 1.042 -3.565 - - - -
55 1.025 1.551 511.90 70.32 - -
56 1.056 -1.990 - - -107.66 73.70
57 1.020 2.149 325.80 -41.23 - -
58 1.065 -4.585 - - 454.32 102.86
59 1.050 0.000* 527.67 73.96 - -
60 1.072 -3.216 - - 84.76 11.34
61 1.064 -4.275 - - 57.20 6.98
62 1.073 -1.455 - - 116.66 11.04
63 1.050 2.137 442.10 12.05 - -
64 1.068 -4.250 - - - -
-------- -------- -------- --------
Total: 4180.97 631.35 4144.91 1152.91
================================================================================
| Branch Data |
================================================================================
Brnch From To From Bus Injection To Bus Injection Loss (I^2 * Z)
# Bus Bus P (MW) Q (MVAr) P (MW) Q (MVAr) P (MW) Q (MVAr)
----- ----- ----- -------- -------- -------- -------- -------- --------
1 1 20 199.72 -28.78 -198.45 28.81 1.273 15.51
2 1 20 199.72 -28.78 -198.45 28.81 1.273 15.51
3 6 10 401.64 20.42 -400.39 -24.98 1.253 21.93
4 7 14 51.08 9.78 -51.06 -28.65 0.017 0.28
5 10 20 292.60 -22.49 -291.93 7.67 0.669 11.30
6 14 29 274.61 3.66 -272.99 -14.88 1.617 25.73
7 16 21 -8.62 39.20 8.63 -52.75 0.015 0.17
8 17 28 -176.04 -74.43 176.41 56.13 0.366 4.42
9 18 61 -311.95 -121.40 315.23 101.10 3.288 34.94
10 18 21 -45.64 -17.34 45.67 -15.65 0.026 0.35
11 19 30 -5.85 95.73 5.97 -99.63 0.117 0.71
12 19 23 34.45 -58.61 -34.41 55.03 0.044 0.26
13 20 29 94.89 73.31 -94.84 -79.38 0.044 0.86
14 20 21 54.36 -81.47 -54.30 68.41 0.058 0.74
15 20 22 154.60 -94.85 -154.32 80.11 0.275 2.88
16 22 47 -186.35 -141.50 187.22 112.80 0.863 10.40
17 28 54 -572.55 16.18 576.53 2.35 3.983 46.27
18 28 43 19.72 -75.14 -19.67 52.01 0.053 0.87
19 35 37 318.52 116.50 -318.32 -118.77 0.202 2.63
20 35 38 184.09 31.63 -183.90 -41.66 0.185 2.84
21 35 40 -130.31 37.05 130.42 -51.55 0.116 1.36
22 37 43 220.36 127.06 -219.89 -134.53 0.470 7.51
23 37 48 97.96 -8.29 -97.89 -7.57 0.068 0.95
24 38 48 50.13 -9.56 -50.12 0.81 0.009 0.10
25 40 51 -138.81 34.08 138.89 -41.60 0.073 0.78
26 41 51 -279.59 -122.46 279.91 117.73 0.328 3.53
27 41 47 283.09 89.04 -282.37 -100.08 0.720 8.08
28 43 47 -95.09 -1.39 95.16 -12.72 0.066 1.07
29 46 58 -99.04 -9.99 99.15 -124.89 0.115 2.88
30 46 48 99.04 9.99 -98.82 -50.24 0.215 3.39
31 53 64 27.27 -106.39 -27.09 30.61 0.175 2.05
32 54 56 -291.89 65.58 297.74 -74.47 5.842 7.18
33 56 61 135.10 -64.51 -134.54 12.56 0.561 5.66
34 58 64 -27.08 -54.52 27.09 -30.61 0.008 0.19
35 1 2 -325.07 1.78 325.07 -1.67 0.000 0.10
36 7 6 -51.08 -9.78 51.08 9.78 -0.000 0.00
37 54 53 -284.63 -67.93 284.63 68.01 0.000 0.08
38 1 3 -74.37 55.78 74.43 -54.61 0.060 1.18
39 3 5 -463.46 -14.01 465.40 52.72 1.935 38.71
40 2 4 -325.07 1.67 325.80 13.13 0.730 14.80
41 6 8 -226.36 -15.10 226.36 30.02 0.000 14.91
42 6 9 -226.36 -15.10 226.36 30.02 0.000 14.91
43 11 10 -59.47 -67.59 59.53 69.20 0.057 1.60
44 10 13 48.26 -21.73 -48.25 22.21 0.014 0.49
45 11 13 -27.53 25.79 27.53 -25.66 0.000 0.14
46 12 13 -20.72 -3.40 20.72 3.44 0.000 0.04
47 14 15 -325.29 -12.93 325.80 40.84 0.513 27.91
48 17 16 -8.62 39.35 8.62 -39.20 0.000 0.15
49 19 18 -178.51 -62.69 178.79 69.37 0.284 6.68
50 19 18 -178.51 -62.69 178.79 69.37 0.284 6.68
51 23 22 -170.11 -50.39 170.34 56.63 0.233 6.24
52 23 22 -170.11 -50.39 170.34 56.63 0.233 6.24
53 24 23 -158.76 -95.44 159.11 103.17 0.349 7.73
54 23 27 215.51 100.01 -215.20 -89.16 0.305 10.85
55 25 27 -209.50 -81.06 209.50 86.84 0.006 5.78
56 26 27 -5.70 -2.32 5.70 2.32 0.000 0.00
57 30 29 -183.63 -39.63 183.92 47.13 0.284 7.50
58 30 29 -183.63 -39.63 183.92 47.13 0.284 7.50
59 31 30 -209.62 -132.98 210.13 147.74 0.509 14.76
60 30 34 151.17 31.16 -151.04 -26.48 0.131 4.67
61 32 34 -86.88 -10.04 86.88 10.90 0.001 0.86
62 33 34 -64.16 -15.10 64.16 15.59 0.000 0.49
63 35 36 -372.30 -185.17 372.30 228.44 0.000 43.26
64 39 38 -133.66 -48.04 133.77 51.22 0.108 3.18
65 42 40 -8.38 -17.32 8.39 17.47 0.005 0.14
66 42 41 3.52 -32.98 -3.51 33.41 0.016 0.44
67 44 43 -159.98 -47.10 160.19 52.16 0.207 5.06
68 45 43 -174.24 -26.14 174.47 31.75 0.229 5.61
69 49 48 -129.16 -27.56 129.27 30.47 0.109 2.91
70 50 48 -117.48 -24.14 117.57 26.53 0.090 2.39
71 51 52 -418.80 -76.13 418.80 112.64 0.000 36.51
72 53 55 -511.90 -24.33 511.90 70.32 0.000 46.00
73 56 57 -325.18 65.28 325.80 -41.23 0.622 24.05
74 58 59 -526.39 -31.22 527.67 73.96 1.288 42.75
75 62 63 -440.68 15.63 442.10 12.05 1.419 27.68
76 60 62 -232.58 15.73 233.24 -8.58 0.662 7.14
77 61 60 -147.52 -43.26 147.82 46.33 0.292 3.07
78 61 62 -90.37 -5.60 90.78 10.13 0.413 4.53
-------- --------
Total: 36.062 699.06
branch(1,:)
ans =
Columns 1 through 8
1.0000 20.0000 0.0032 0.0390 0.1520 875.0000 912.5000 950.0000
Columns 9 through 16
0 0 1.0000 -360.0000 360.0000 199.7191 -28.7793 -198.4462
Column 17
28.8071
MVAfr=sqrt(branch(:,14).^2+branch(:,15).^2)
MVAfr =
201.7820
201.7820
402.1602
52.0067
293.4613
274.6337
40.1350
191.1314
334.7358
48.8241
95.9042
67.9819
119.9093
97.9357
181.3782
233.9875
572.7749
77.6881
339.1567
186.7829
135.4725
254.3708
98.3060
51.0366
142.9358
305.2278
296.7676
95.1025
99.5412
99.5412
109.8266
299.1712
149.7120
60.8775
325.0753
52.0067
292.6295
92.9645
463.6763
325.0747
226.8633
226.8633
90.0296
52.9289
37.7254
20.9971
325.5439
40.2857
189.1963
189.1963
177.4119
177.4119
185.2377
237.5845
224.6339
6.1541
187.8618
187.8618
248.2409
154.3488
87.4572
65.9129
415.8087
142.0302
19.2463
33.1635
166.7684
176.1889
132.0667
119.9335
425.6636
512.4776
331.6654
527.3120
440.9577
233.1069
153.7358
90.5439
pctfr=MVAfr./branch(:,6)*100
pctfr =
23.0608
23.0608
60.9334
8.5961
58.6923
45.7723
6.6892
31.8552
55.7893
8.1374
15.9840
11.3303
19.9849
16.3226
30.2297
38.9979
81.8250
12.9480
56.5261
31.1305
22.5787
42.3951
16.3843
8.5061
23.8226
50.8713
49.4613
15.8504
16.5902
16.5902
18.3044
49.8619
24.9520
10.1463
46.4393
8.6678
48.7716
9.2964
46.3676
43.3433
37.8106
37.8106
15.0049
8.8215
6.2876
3.4995
40.6930
6.7143
31.5327
31.5327
29.5687
29.5687
30.8730
39.5974
37.4390
1.0257
31.3103
31.3103
41.3735
25.7248
14.5762
10.9855
46.2010
23.6717
3.2077
5.5272
27.7947
29.3648
22.0111
19.9889
42.5664
39.4214
41.4582
26.3656
40.0871
38.8512
25.6226
15.0906
help sort
sort Sort in ascending or descending order.
For vectors, sort(X) sorts the elements of X in ascending order.
For matrices, sort(X) sorts each column of X in ascending order.
For N-D arrays, sort(X) sorts along the first non-singleton
dimension of X. When X is a cell array of strings, sort(X) sorts
the strings in ASCII dictionary order.
Y = sort(X,DIM,MODE)
has two optional parameters.
DIM selects a dimension along which to sort.
MODE selects the direction of the sort
'ascend' results in ascending order
'descend' results in descending order
The result is in Y which has the same shape and type as X.
[Y,I] = sort(X,DIM,MODE) also returns an index matrix I.
If X is a vector, then Y = X(I).
If X is an m-by-n matrix and DIM=1, then
for j = 1:n, Y(:,j) = X(I(:,j),j); end
When X is complex, the elements are sorted by ABS(X). Complex
matches are further sorted by ANGLE(X).
When more than one element has the same value, the order of the
elements is preserved in the sorted result and the indices
relating to equal elements will be ascending.
Example: If X = [3 7 5
0 4 2]
then sort(X,1) is [0 4 2 and sort(X,2) is [3 5 7
3 7 5] 0 2 4];
See also issorted, sortrows, min, max, mean, median, unique.
Other functions named sort
Reference page in Help browser
doc sort
[dum,ndxj]=sort(pctfr)
dum =
1.0257
3.2077
3.4995
5.5272
6.2876
6.6892
6.7143
8.1374
8.5061
8.5961
8.6678
8.8215
9.2964
10.1463
10.9855
11.3303
12.9480
14.5762
15.0049
15.0906
15.8504
15.9840
16.3226
16.3843
16.5902
16.5902
18.3044
19.9849
19.9889
22.0111
22.5787
23.0608
23.0608
23.6717
23.8226
24.9520
25.6226
25.7248
26.3656
27.7947
29.3648
29.5687
29.5687
30.2297
30.8730
31.1305
31.3103
31.3103
31.5327
31.5327
31.8552
37.4390
37.8106
37.8106
38.8512
38.9979
39.4214
39.5974
40.0871
40.6930
41.3735
41.4582
42.3951
42.5664
43.3433
45.7723
46.2010
46.3676
46.4393
48.7716
49.4613
49.8619
50.8713
55.7893
56.5261
58.6923
60.9334
81.8250
ndxj =
56
65
46
66
45
7
48
10
24
4
36
44
38
34
62
12
18
61
43
78
28
11
14
23
29
30
31
13
70
69
21
1
2
64
25
33
77
60
74
67
68
51
52
15
53
20
57
58
49
50
8
55
41
42
76
16
72
54
75
47
59
73
22
71
40
6
63
39
35
37
27
32
26
9
19
5
3
17
[branch(ndxj,1:2),branch(ndxj,6),pctfr(ndxj)]
ans =
1.0e+03 *
0.0260 0.0270 0.6000 0.0010
0.0420 0.0400 0.6000 0.0032
0.0120 0.0130 0.6000 0.0035
0.0420 0.0410 0.6000 0.0055
0.0110 0.0130 0.6000 0.0063
0.0160 0.0210 0.6000 0.0067
0.0170 0.0160 0.6000 0.0067
0.0180 0.0210 0.6000 0.0081
0.0380 0.0480 0.6000 0.0085
0.0070 0.0140 0.6050 0.0086
0.0070 0.0060 0.6000 0.0087
0.0100 0.0130 0.6000 0.0088
0.0010 0.0030 1.0000 0.0093
0.0580 0.0640 0.6000 0.0101
0.0330 0.0340 0.6000 0.0110
0.0190 0.0230 0.6000 0.0113
0.0280 0.0430 0.6000 0.0129
0.0320 0.0340 0.6000 0.0146
0.0110 0.0100 0.6000 0.0150
0.0610 0.0620 0.6000 0.0151
0.0430 0.0470 0.6000 0.0159
0.0190 0.0300 0.6000 0.0160
0.0200 0.0210 0.6000 0.0163
0.0370 0.0480 0.6000 0.0164
0.0460 0.0580 0.6000 0.0166
0.0460 0.0480 0.6000 0.0166
0.0530 0.0640 0.6000 0.0183
0.0200 0.0290 0.6000 0.0200
0.0500 0.0480 0.6000 0.0200
0.0490 0.0480 0.6000 0.0220
0.0350 0.0400 0.6000 0.0226
0.0010 0.0200 0.8750 0.0231
0.0010 0.0200 0.8750 0.0231
0.0390 0.0380 0.6000 0.0237
0.0400 0.0510 0.6000 0.0238
0.0560 0.0610 0.6000 0.0250
0.0610 0.0600 0.6000 0.0256
0.0300 0.0340 0.6000 0.0257
0.0580 0.0590 2.0000 0.0264
0.0440 0.0430 0.6000 0.0278
0.0450 0.0430 0.6000 0.0294
0.0230 0.0220 0.6000 0.0296
0.0230 0.0220 0.6000 0.0296
0.0200 0.0220 0.6000 0.0302
0.0240 0.0230 0.6000 0.0309
0.0350 0.0380 0.6000 0.0311
0.0300 0.0290 0.6000 0.0313
0.0300 0.0290 0.6000 0.0313
0.0190 0.0180 0.6000 0.0315
0.0190 0.0180 0.6000 0.0315
0.0170 0.0280 0.6000 0.0319
0.0250 0.0270 0.6000 0.0374
0.0060 0.0080 0.6000 0.0378
0.0060 0.0090 0.6000 0.0378
0.0600 0.0620 0.6000 0.0389
0.0220 0.0470 0.6000 0.0390
0.0530 0.0550 1.3000 0.0394
0.0230 0.0270 0.6000 0.0396
0.0620 0.0630 1.1000 0.0401
0.0140 0.0150 0.8000 0.0407
0.0310 0.0300 0.6000 0.0414
0.0560 0.0570 0.8000 0.0415
0.0370 0.0430 0.6000 0.0424
0.0510 0.0520 1.0000 0.0426
0.0020 0.0040 0.7500 0.0433
0.0140 0.0290 0.6000 0.0458
0.0350 0.0360 0.9000 0.0462
0.0030 0.0050 1.0000 0.0464
0.0010 0.0020 0.7000 0.0464
0.0540 0.0530 0.6000 0.0488
0.0410 0.0470 0.6000 0.0495
0.0540 0.0560 0.6000 0.0499
0.0410 0.0510 0.6000 0.0509
0.0180 0.0610 0.6000 0.0558
0.0350 0.0370 0.6000 0.0565
0.0100 0.0200 0.5000 0.0587
0.0060 0.0100 0.6600 0.0609
0.0280 0.0540 0.7000 0.0818
[branch(ndxj,1:2),pctfr(ndxj)]
ans =
26.0000 27.0000 1.0257
42.0000 40.0000 3.2077
12.0000 13.0000 3.4995
42.0000 41.0000 5.5272
11.0000 13.0000 6.2876
16.0000 21.0000 6.6892
17.0000 16.0000 6.7143
18.0000 21.0000 8.1374
38.0000 48.0000 8.5061
7.0000 14.0000 8.5961
7.0000 6.0000 8.6678
10.0000 13.0000 8.8215
1.0000 3.0000 9.2964
58.0000 64.0000 10.1463
33.0000 34.0000 10.9855
19.0000 23.0000 11.3303
28.0000 43.0000 12.9480
32.0000 34.0000 14.5762
11.0000 10.0000 15.0049
61.0000 62.0000 15.0906
43.0000 47.0000 15.8504
19.0000 30.0000 15.9840
20.0000 21.0000 16.3226
37.0000 48.0000 16.3843
46.0000 58.0000 16.5902
46.0000 48.0000 16.5902
53.0000 64.0000 18.3044
20.0000 29.0000 19.9849
50.0000 48.0000 19.9889
49.0000 48.0000 22.0111
35.0000 40.0000 22.5787
1.0000 20.0000 23.0608
1.0000 20.0000 23.0608
39.0000 38.0000 23.6717
40.0000 51.0000 23.8226
56.0000 61.0000 24.9520
61.0000 60.0000 25.6226
30.0000 34.0000 25.7248
58.0000 59.0000 26.3656
44.0000 43.0000 27.7947
45.0000 43.0000 29.3648
23.0000 22.0000 29.5687
23.0000 22.0000 29.5687
20.0000 22.0000 30.2297
24.0000 23.0000 30.8730
35.0000 38.0000 31.1305
30.0000 29.0000 31.3103
30.0000 29.0000 31.3103
19.0000 18.0000 31.5327
19.0000 18.0000 31.5327
17.0000 28.0000 31.8552
25.0000 27.0000 37.4390
6.0000 8.0000 37.8106
6.0000 9.0000 37.8106
60.0000 62.0000 38.8512
22.0000 47.0000 38.9979
53.0000 55.0000 39.4214
23.0000 27.0000 39.5974
62.0000 63.0000 40.0871
14.0000 15.0000 40.6930
31.0000 30.0000 41.3735
56.0000 57.0000 41.4582
37.0000 43.0000 42.3951
51.0000 52.0000 42.5664
2.0000 4.0000 43.3433
14.0000 29.0000 45.7723
35.0000 36.0000 46.2010
3.0000 5.0000 46.3676
1.0000 2.0000 46.4393
54.0000 53.0000 48.7716
41.0000 47.0000 49.4613
54.0000 56.0000 49.8619
41.0000 51.0000 50.8713
18.0000 61.0000 55.7893
35.0000 37.0000 56.5261
10.0000 20.0000 58.6923
6.0000 10.0000 60.9334
28.0000 54.0000 81.8250
[branch(ndxj(end:1),1:2),pctfr(ndxj(end:1))]
ans =
Empty matrix: 0-by-3
[branch(ndxj(end:-1:1),1:2),pctfr(ndxj(end:-1:1))]
ans =
28.0000 54.0000 81.8250
6.0000 10.0000 60.9334
10.0000 20.0000 58.6923
35.0000 37.0000 56.5261
18.0000 61.0000 55.7893
41.0000 51.0000 50.8713
54.0000 56.0000 49.8619
41.0000 47.0000 49.4613
54.0000 53.0000 48.7716
1.0000 2.0000 46.4393
3.0000 5.0000 46.3676
35.0000 36.0000 46.2010
14.0000 29.0000 45.7723
2.0000 4.0000 43.3433
51.0000 52.0000 42.5664
37.0000 43.0000 42.3951
56.0000 57.0000 41.4582
31.0000 30.0000 41.3735
14.0000 15.0000 40.6930
62.0000 63.0000 40.0871
23.0000 27.0000 39.5974
53.0000 55.0000 39.4214
22.0000 47.0000 38.9979
60.0000 62.0000 38.8512
6.0000 9.0000 37.8106
6.0000 8.0000 37.8106
25.0000 27.0000 37.4390
17.0000 28.0000 31.8552
19.0000 18.0000 31.5327
19.0000 18.0000 31.5327
30.0000 29.0000 31.3103
30.0000 29.0000 31.3103
35.0000 38.0000 31.1305
24.0000 23.0000 30.8730
20.0000 22.0000 30.2297
23.0000 22.0000 29.5687
23.0000 22.0000 29.5687
45.0000 43.0000 29.3648
44.0000 43.0000 27.7947
58.0000 59.0000 26.3656
30.0000 34.0000 25.7248
61.0000 60.0000 25.6226
56.0000 61.0000 24.9520
40.0000 51.0000 23.8226
39.0000 38.0000 23.6717
1.0000 20.0000 23.0608
1.0000 20.0000 23.0608
35.0000 40.0000 22.5787
49.0000 48.0000 22.0111
50.0000 48.0000 19.9889
20.0000 29.0000 19.9849
53.0000 64.0000 18.3044
46.0000 48.0000 16.5902
46.0000 58.0000 16.5902
37.0000 48.0000 16.3843
20.0000 21.0000 16.3226
19.0000 30.0000 15.9840
43.0000 47.0000 15.8504
61.0000 62.0000 15.0906
11.0000 10.0000 15.0049
32.0000 34.0000 14.5762
28.0000 43.0000 12.9480
19.0000 23.0000 11.3303
33.0000 34.0000 10.9855
58.0000 64.0000 10.1463
1.0000 3.0000 9.2964
10.0000 13.0000 8.8215
7.0000 6.0000 8.6678
7.0000 14.0000 8.5961
38.0000 48.0000 8.5061
18.0000 21.0000 8.1374
17.0000 16.0000 6.7143
16.0000 21.0000 6.6892
11.0000 13.0000 6.2876
42.0000 41.0000 5.5272
12.0000 13.0000 3.4995
42.0000 40.0000 3.2077
26.0000 27.0000 1.0257
[branch(ndxj(end:-1:1),1:2),branch(ndxj(end:-1:1),6),pctfr(ndxj(end:-1:1))]
ans =
1.0e+03 *
0.0280 0.0540 0.7000 0.0818
0.0060 0.0100 0.6600 0.0609
0.0100 0.0200 0.5000 0.0587
0.0350 0.0370 0.6000 0.0565
0.0180 0.0610 0.6000 0.0558
0.0410 0.0510 0.6000 0.0509
0.0540 0.0560 0.6000 0.0499
0.0410 0.0470 0.6000 0.0495
0.0540 0.0530 0.6000 0.0488
0.0010 0.0020 0.7000 0.0464
0.0030 0.0050 1.0000 0.0464
0.0350 0.0360 0.9000 0.0462
0.0140 0.0290 0.6000 0.0458
0.0020 0.0040 0.7500 0.0433
0.0510 0.0520 1.0000 0.0426
0.0370 0.0430 0.6000 0.0424
0.0560 0.0570 0.8000 0.0415
0.0310 0.0300 0.6000 0.0414
0.0140 0.0150 0.8000 0.0407
0.0620 0.0630 1.1000 0.0401
0.0230 0.0270 0.6000 0.0396
0.0530 0.0550 1.3000 0.0394
0.0220 0.0470 0.6000 0.0390
0.0600 0.0620 0.6000 0.0389
0.0060 0.0090 0.6000 0.0378
0.0060 0.0080 0.6000 0.0378
0.0250 0.0270 0.6000 0.0374
0.0170 0.0280 0.6000 0.0319
0.0190 0.0180 0.6000 0.0315
0.0190 0.0180 0.6000 0.0315
0.0300 0.0290 0.6000 0.0313
0.0300 0.0290 0.6000 0.0313
0.0350 0.0380 0.6000 0.0311
0.0240 0.0230 0.6000 0.0309
0.0200 0.0220 0.6000 0.0302
0.0230 0.0220 0.6000 0.0296
0.0230 0.0220 0.6000 0.0296
0.0450 0.0430 0.6000 0.0294
0.0440 0.0430 0.6000 0.0278
0.0580 0.0590 2.0000 0.0264
0.0300 0.0340 0.6000 0.0257
0.0610 0.0600 0.6000 0.0256
0.0560 0.0610 0.6000 0.0250
0.0400 0.0510 0.6000 0.0238
0.0390 0.0380 0.6000 0.0237
0.0010 0.0200 0.8750 0.0231
0.0010 0.0200 0.8750 0.0231
0.0350 0.0400 0.6000 0.0226
0.0490 0.0480 0.6000 0.0220
0.0500 0.0480 0.6000 0.0200
0.0200 0.0290 0.6000 0.0200
0.0530 0.0640 0.6000 0.0183
0.0460 0.0480 0.6000 0.0166
0.0460 0.0580 0.6000 0.0166
0.0370 0.0480 0.6000 0.0164
0.0200 0.0210 0.6000 0.0163
0.0190 0.0300 0.6000 0.0160
0.0430 0.0470 0.6000 0.0159
0.0610 0.0620 0.6000 0.0151
0.0110 0.0100 0.6000 0.0150
0.0320 0.0340 0.6000 0.0146
0.0280 0.0430 0.6000 0.0129
0.0190 0.0230 0.6000 0.0113
0.0330 0.0340 0.6000 0.0110
0.0580 0.0640 0.6000 0.0101
0.0010 0.0030 1.0000 0.0093
0.0100 0.0130 0.6000 0.0088
0.0070 0.0060 0.6000 0.0087
0.0070 0.0140 0.6050 0.0086
0.0380 0.0480 0.6000 0.0085
0.0180 0.0210 0.6000 0.0081
0.0170 0.0160 0.6000 0.0067
0.0160 0.0210 0.6000 0.0067
0.0110 0.0130 0.6000 0.0063
0.0420 0.0410 0.6000 0.0055
0.0120 0.0130 0.6000 0.0035
0.0420 0.0400 0.6000 0.0032
0.0260 0.0270 0.6000 0.0010
help fprintf
fprintf Write formatted data to text file.
fprintf(FID, FORMAT, A, ...) applies the FORMAT to all elements of
array A and any additional array arguments in column order, and writes
the data to a text file. FID is an integer file identifier. Obtain
FID from FOPEN, or set it to 1 (for standard output, the screen) or 2
(standard error). fprintf uses the encoding scheme specified in the
call to FOPEN.
fprintf(FORMAT, A, ...) formats data and displays the results on the
screen.
COUNT = fprintf(...) returns the number of bytes that fprintf writes.
FORMAT is a string that describes the format of the output fields, and
can include combinations of the following:
* Conversion specifications, which include a % character, a
conversion character (such as d, i, o, u, x, f, e, g, c, or s),
and optional flags, width, and precision fields. For more
details, type "doc fprintf" at the command prompt.
* Literal text to print.
* Escape characters, including:
\b Backspace '' Single quotation mark
\f Form feed %% Percent character
\n New line \\ Backslash
\r Carriage return \xN Hexadecimal number N
\t Horizontal tab \N Octal number N
For most cases, \n is sufficient for a single line break.
However, if you are creating a file for use with Microsoft
Notepad, specify a combination of \r\n to move to a new line.
Notes:
If you apply an integer or string conversion to a numeric value that
contains a fraction, MATLAB overrides the specified conversion, and
uses %e.
Numeric conversions print only the real component of complex numbers.
Example: Create a text file called exp.txt containing a short table of
the exponential function.
x = 0:.1:1;
y = [x; exp(x)];
fid = fopen('exp.txt','w');
fprintf(fid,'%6.2f %12.8f\n',y);
fclose(fid);
Examine the contents of exp.txt:
type exp.txt
MATLAB returns:
0.00 1.00000000
0.10 1.10517092
...
1.00 2.71828183
See also fopen, fclose, fscanf, fread, fwrite, sprintf, disp.
Other functions named fprintf
Reference page in Help browser
doc fprintf
help printf
printf not found.
Use the Help browser search field to search the documentation, or
type "help help" for help command options, such as help for methods.
fprintf(0,'%2d %2d %f %f\n',[branch(ndxj(end:-1:1),1:2),branch(ndxj(end:-1:1),6),pctfr(ndxj(end:-1:1))]')
{Error using fprintf
Operation is not implemented for requested file identifier.
}
fprintf('%2d %2d %f %f\n',[branch(ndxj(end:-1:1),1:2),branch(ndxj(end:-1:1),6),pctfr(ndxj(end:-1:1))]')
28 54 700.000000 81.824987
6 10 660.000000 60.933369
10 20 500.000000 58.692256
35 37 600.000000 56.526111
18 61 600.000000 55.789298
41 51 600.000000 50.871299
54 56 600.000000 49.861859
41 47 600.000000 49.461275
54 53 600.000000 48.771586
1 2 700.000000 46.439326
3 5 1000.000000 46.367630
35 36 900.000000 46.200967
14 29 600.000000 45.772290
2 4 750.000000 43.343298
51 52 1000.000000 42.566356
37 43 600.000000 42.395128
56 57 800.000000 41.458178
31 30 600.000000 41.373482
14 15 800.000000 40.692984
62 63 1100.000000 40.087067
23 27 600.000000 39.597418
53 55 1300.000000 39.421356
22 47 600.000000 38.997911
60 62 600.000000 38.851153
6 9 600.000000 37.810550
6 8 600.000000 37.810550
25 27 600.000000 37.438985
17 28 600.000000 31.855231
19 18 600.000000 31.532719
19 18 600.000000 31.532719
30 29 600.000000 31.310302
30 29 600.000000 31.310302
35 38 600.000000 31.130478
24 23 600.000000 30.872958
20 22 600.000000 30.229708
23 22 600.000000 29.568652
23 22 600.000000 29.568652
45 43 600.000000 29.364817
44 43 600.000000 27.794729
58 59 2000.000000 26.365600
30 34 600.000000 25.724807
61 60 600.000000 25.622631
56 61 600.000000 24.951997
40 51 600.000000 23.822641
39 38 600.000000 23.671695
1 20 875.000000 23.060803
1 20 875.000000 23.060803
35 40 600.000000 22.578750
49 48 600.000000 22.011109
50 48 600.000000 19.988924
20 29 600.000000 19.984892
53 64 600.000000 18.304429
46 48 600.000000 16.590198
46 58 600.000000 16.590198
37 48 600.000000 16.384336
20 21 600.000000 16.322620
19 30 600.000000 15.984038
43 47 600.000000 15.850410
61 62 600.000000 15.090645
11 10 600.000000 15.004934
32 34 600.000000 14.576200
28 43 600.000000 12.948013
19 23 600.000000 11.330310
33 34 600.000000 10.985490
58 64 600.000000 10.146257
1 3 1000.000000 9.296446
10 13 600.000000 8.821485
7 6 600.000000 8.667778
7 14 605.000000 8.596144
38 48 600.000000 8.506108
18 21 600.000000 8.137357
17 16 600.000000 6.714291
16 21 600.000000 6.689165
11 13 600.000000 6.287570
42 41 600.000000 5.527250
12 13 600.000000 3.499517
42 40 600.000000 3.207717
26 27 600.000000 1.025676
[baseMVA, bus_brctgc, gen_brctgc, branch_brctgc] = runpf('esca64_n');
MATPOWER Version 6.0, 16-Dec-2016 -- AC Power Flow (Newton)
Newton's method power flow converged in 4 iterations.
Converged in 0.01 seconds
================================================================================
| System Summary |
================================================================================
How many? How much? P (MW) Q (MVAr)
--------------------- ------------------- ------------- -----------------
Buses 64 Total Gen Capacity 6200.0 -2750.0 to 5300.0
Generators 11 On-line Capacity 6200.0 -2750.0 to 5300.0
Committed Gens 11 Generation (actual) 4197.4 983.1
Loads 28 Load 4144.9 1152.9
Fixed 28 Fixed 4144.9 1152.9
Dispatchable 0 Dispatchable -0.0 of -0.0 -0.0
Shunts 6 Shunt (inj) -0.0 263.1
Branches 78 Losses (I^2 * Z) 52.53 989.98
Transformers 38 Branch Charging (inj) - 896.7
Inter-ties 7 Total Inter-tie Flow 1960.5 178.3
Areas 3
Minimum Maximum
------------------------- --------------------------------
Voltage Magnitude 0.883 p.u. @ bus 31 1.065 p.u. @ bus 46
Voltage Angle -23.73 deg @ bus 25 9.17 deg @ bus 55
P Losses (I^2*R) - 13.53 MW @ line 18-61
Q Losses (I^2*X) - 143.72 MVAr @ line 18-61
================================================================================
| Bus Data |
================================================================================
Bus Voltage Generation Load
# Mag(pu) Ang(deg) P (MW) Q (MVAr) P (MW) Q (MVAr)
----- ------- -------- -------- -------- -------- --------
1 1.002 -13.079 - - - -
2 1.002 -13.061 - - - -
3 0.997 -12.475 - - 389.04 68.62
4 1.010 -10.460 325.80 46.04 - -
5 1.010 -7.738 465.40 67.65 - -
6 1.013 -12.072 - - - -
7 1.013 -12.075 - - - -
8 1.000 -8.316 232.70 52.54 6.34 4.22
9 1.000 -8.316 232.70 52.54 6.34 4.22
10 1.002 -15.253 - - - -
11 1.008 -15.903 - - 87.00 41.80
12 1.020 -15.865 - - 20.72 3.40
13 1.006 -15.747 - - - -
14 1.011 -12.317 - - 101.74 37.92
15 1.025 -7.427 325.80 62.37 - -
16 1.001 -19.501 - - - -
17 1.006 -21.061 - - 184.66 35.08
18 0.994 -16.662 - - - -
19 0.941 -19.374 - - 328.42 88.26
20 0.998 -17.541 - - 384.98 37.72
21 0.999 -18.192 - - - -
22 1.003 -18.341 - - - -
23 0.945 -19.829 - - - -
24 0.902 -21.852 - - 158.76 95.44
25 0.916 -23.727 - - 209.50 81.06
26 0.925 -22.350 - - 5.70 2.32
27 0.925 -22.311 - - - -
28 1.015 -21.777 - - 376.42 2.84
29 0.993 -17.665 - - - -
30 0.936 -19.559 - - - -
31 0.883 -22.382 - - 209.62 132.98
32 0.928 -21.899 - - 86.88 10.04
33 0.928 -21.748 - - 64.16 15.10
34 0.929 -21.322 - - - -
35 1.058 -15.251 - - - -
36 1.050 -10.109 372.30 272.31 - -
37 1.054 -15.736 - - - -
38 1.053 -15.618 - - - -
39 1.018 -16.830 - - 133.66 48.04
40 1.057 -14.886 - - - -
41 1.049 -15.351 - - - -
42 1.029 -15.150 - - 4.86 50.30
43 1.033 -18.479 - - - -
44 1.022 -20.160 - - 159.98 47.10
45 1.026 -20.314 - - 174.24 26.14
46 1.065 -9.148 - - - -
47 1.035 -17.045 - - - -
48 1.053 -15.491 - - - -
49 1.047 -16.737 - - 129.16 27.56
50 1.047 -16.624 - - 117.48 24.14
51 1.056 -14.667 - - - -
52 1.015 -9.872 418.80 158.35 - -
53 1.047 4.094 - - 200.00 62.70
54 1.047 4.091 - - - -
55 1.025 9.173 511.90 44.70 - -
56 1.041 3.953 - - -107.66 73.70
57 1.020 8.131 325.80 23.79 - -
58 1.058 -4.750 - - 454.32 102.86
59 1.050 0.000* 544.14 120.78 - -
60 1.054 -3.332 - - 84.76 11.34
61 1.040 -4.402 - - 57.20 6.98
62 1.062 -1.557 - - 116.66 11.04
63 1.050 2.042 442.10 82.07 - -
64 1.061 -1.481 - - - -
-------- -------- -------- --------
Total: 4197.44 983.15 4144.91 1152.91
================================================================================
| Branch Data |
================================================================================
Brnch From To From Bus Injection To Bus Injection Loss (I^2 * Z)
# Bus Bus P (MW) Q (MVAr) P (MW) Q (MVAr) P (MW) Q (MVAr)
----- ----- ----- -------- -------- -------- -------- -------- --------
1 1 20 199.71 -5.07 -198.44 5.35 1.271 15.49
2 1 20 199.71 -5.07 -198.44 5.35 1.271 15.49
3 6 10 406.14 52.38 -404.82 -55.39 1.319 23.09
4 7 14 46.58 13.62 -46.56 -32.31 0.016 0.25
5 10 20 297.03 7.90 -296.33 -21.50 0.706 11.91
6 14 29 270.10 28.27 -268.48 -38.74 1.619 25.75
7 16 21 -274.37 44.16 274.91 -51.00 0.544 6.37
8 17 28 89.71 -86.94 -89.56 66.90 0.150 1.82
9 18 61 -645.91 -30.97 659.44 121.94 13.526 143.72
10 18 21 150.00 -58.68 -149.67 30.98 0.320 4.26
11 19 30 52.76 61.67 -52.67 -65.59 0.087 0.52
12 19 23 113.71 -84.46 -113.50 82.00 0.205 1.24
13 20 29 40.65 81.08 -40.62 -87.30 0.026 0.52
14 20 21 125.35 -31.93 -125.24 20.03 0.115 1.46
15 20 22 142.23 -76.07 -142.00 61.29 0.224 2.34
16 22 47 -119.47 -154.33 120.06 123.38 0.586 7.06
17 28 54 0.00 0.00 0.00 0.00 0.000 0.00
18 28 43 -286.86 -69.74 287.94 64.27 1.081 17.71
19 35 37 375.54 154.32 -375.24 -155.27 0.296 3.84
20 35 38 81.38 49.83 -81.33 -61.62 0.052 0.80
21 35 40 -84.62 19.91 84.67 -34.88 0.050 0.58
22 37 43 416.66 148.79 -415.23 -140.56 1.426 22.82
23 37 48 -41.41 6.48 41.43 -22.70 0.014 0.19
24 38 48 -52.44 10.33 52.46 -18.85 0.011 0.12
25 40 51 -97.12 16.44 97.16 -24.21 0.035 0.38
26 41 51 -321.19 -146.91 321.64 143.65 0.449 4.83
27 41 47 328.77 114.42 -327.76 -121.77 1.009 11.33
28 43 47 -207.38 -7.95 207.70 -1.61 0.322 5.20
29 46 58 -343.13 -11.03 344.20 -97.42 1.067 26.68
30 46 48 343.13 11.03 -340.72 -15.58 2.410 38.04
31 53 64 258.57 -83.57 -256.37 31.81 2.202 25.85
32 54 56 53.33 20.08 -53.10 -35.70 0.232 0.29
33 56 61 485.94 -38.01 -478.96 52.92 6.979 70.45
34 58 64 -255.79 -37.71 256.37 -31.81 0.585 14.63
35 1 2 -325.06 -30.86 325.06 30.97 0.000 0.11
36 7 6 -46.58 -13.62 46.58 13.62 0.000 0.00
37 54 53 -53.33 -20.08 53.33 20.08 0.000 0.00
38 1 3 -74.36 40.99 74.41 -40.00 0.050 0.99
39 3 5 -463.45 -28.62 465.40 67.65 1.951 39.03
40 2 4 -325.06 -30.97 325.80 46.04 0.743 15.07
41 6 8 -226.36 -33.00 226.36 48.32 0.000 15.32
42 6 9 -226.36 -33.00 226.36 48.32 0.000 15.32
43 11 10 -59.45 -66.77 59.50 68.38 0.057 1.61
44 10 13 48.29 -20.90 -48.27 21.39 0.014 0.49
45 11 13 -27.55 24.97 27.55 -24.83 0.000 0.14
46 12 13 -20.72 -3.40 20.72 3.44 0.000 0.04
47 14 15 -325.28 -33.88 325.80 62.37 0.524 28.49
48 17 16 -274.37 51.86 274.37 -44.16 -0.000 7.70
49 19 18 -247.44 -32.74 247.96 44.83 0.515 12.09
50 19 18 -247.44 -32.74 247.96 44.83 0.515 12.09
51 23 22 -130.57 -67.23 130.74 71.67 0.166 4.44
52 23 22 -130.57 -67.23 130.74 71.67 0.166 4.44
53 24 23 -158.76 -95.44 159.12 103.47 0.363 8.03
54 23 27 215.52 100.68 -215.21 -89.39 0.317 11.29
55 25 27 -209.50 -81.06 209.51 87.07 0.006 6.01
56 26 27 -5.70 -2.32 5.70 2.32 0.000 0.00
57 30 29 -154.33 -57.05 154.55 63.02 0.226 5.96
58 30 29 -154.33 -57.05 154.55 63.02 0.226 5.96
59 31 30 -209.62 -132.98 210.15 148.32 0.529 15.34
60 30 34 151.18 31.38 -151.04 -26.53 0.136 4.85
61 32 34 -86.88 -10.04 86.88 10.93 0.001 0.89
62 33 34 -64.16 -15.10 64.16 15.60 0.001 0.50
63 35 36 -372.30 -224.07 372.30 272.31 0.000 48.24
64 39 38 -133.66 -48.04 133.77 51.30 0.111 3.26
65 42 40 -12.45 -18.25 12.46 18.44 0.007 0.19
66 42 41 7.59 -32.05 -7.57 32.49 0.016 0.44
67 44 43 -159.98 -47.10 160.19 52.32 0.213 5.22
68 45 43 -174.24 -26.14 174.47 31.92 0.236 5.78
69 49 48 -129.16 -27.56 129.27 30.54 0.111 2.98
70 50 48 -117.48 -24.14 117.57 26.59 0.092 2.45
71 51 52 -418.80 -119.44 418.80 158.35 0.000 38.92
72 53 55 -511.90 0.79 511.90 44.70 0.000 45.49
73 56 57 -325.18 0.00 325.80 23.79 0.615 23.80
74 58 59 -542.73 -74.00 544.14 120.78 1.409 46.78
75 62 63 -440.63 -53.46 442.10 82.07 1.467 28.61
76 60 62 -232.63 -30.66 233.32 38.14 0.693 7.48
77 61 60 -147.49 -86.39 147.87 90.36 0.378 3.97
78 61 62 -90.18 -26.82 90.65 31.94 0.467 5.12
-------- --------
Total: 52.528 989.98
MVAfr_brctgc=sqrt(branch_brctgc(:,14).^2+branch_brctgc(:,15).^2)
MVAfr_brctgc =
199.7735
199.7735
409.5077
48.5268
297.1393
271.5729
277.8999
124.9282
646.6531
161.0659
81.1594
141.6432
90.6987
129.3550
161.2915
195.1703
0
295.2150
406.0083
95.4238
86.9279
442.4259
41.9165
53.4517
98.5043
353.1964
348.1085
207.5296
343.3109
343.3109
271.7434
56.9835
487.4236
258.5507
326.5186
48.5268
56.9835
84.9110
464.3315
326.5287
228.7531
228.7531
89.3979
52.6140
37.1821
20.9971
327.0362
279.2274
249.5991
249.5991
146.8637
146.8637
185.2377
237.8798
224.6339
6.1541
164.5345
164.5345
248.2409
154.3990
87.4572
65.9129
434.5257
142.0302
22.0913
32.9376
166.7684
176.1889
132.0667
119.9335
435.4981
511.9006
325.1846
547.7536
443.8645
234.6425
170.9329
94.0875
[baseMVA, bus_gctgc, gen_gctgc, branch_gctgc] = runpf('esca64_n');
MATPOWER Version 6.0, 16-Dec-2016 -- AC Power Flow (Newton)
Newton's method power flow converged in 4 iterations.
Converged in 0.01 seconds
================================================================================
| System Summary |
================================================================================
How many? How much? P (MW) Q (MVAr)
--------------------- ------------------- ------------- -----------------
Buses 64 Total Gen Capacity 6200.0 -2750.0 to 5300.0
Generators 11 On-line Capacity 5800.0 -2600.0 to 5000.0
Committed Gens 10 Generation (actual) 4185.7 773.8
Loads 28 Load 4144.9 1152.9
Fixed 28 Fixed 4144.9 1152.9
Dispatchable 0 Dispatchable -0.0 of -0.0 -0.0
Shunts 6 Shunt (inj) -0.0 273.7
Branches 78 Losses (I^2 * Z) 40.74 832.82
Transformers 38 Branch Charging (inj) - 938.2
Inter-ties 7 Total Inter-tie Flow 1955.2 221.1
Areas 3
Minimum Maximum
------------------------- --------------------------------
Voltage Magnitude 0.897 p.u. @ bus 31 1.071 p.u. @ bus 62
Voltage Angle -26.93 deg @ bus 25 0.00 deg @ bus 59
P Losses (I^2*R) - 5.53 MW @ line 28-54
Q Losses (I^2*X) - 113.75 MVAr @ line 58-59
================================================================================
| Bus Data |
================================================================================
Bus Voltage Generation Load
# Mag(pu) Ang(deg) P (MW) Q (MVAr) P (MW) Q (MVAr)
----- ------- -------- -------- -------- -------- --------
1 1.004 -20.234 - - - -
2 1.004 -20.234 - - - -
3 0.998 -19.628 - - 389.04 68.62
4 1.004 -20.234 - - - -
5 1.010 -14.894 465.40 61.44 - -
6 1.017 -15.685 - - - -
7 1.017 -15.687 - - - -
8 1.000 -11.945 232.70 37.50 6.34 4.22
9 1.000 -11.945 232.70 37.50 6.34 4.22
10 1.010 -18.832 - - - -
11 1.016 -19.472 - - 87.00 41.80
12 1.028 -19.434 - - 20.72 3.40
13 1.014 -19.319 - - - -
14 1.015 -15.933 - - 101.74 37.92
15 1.025 -11.060 325.80 44.60 - -
16 1.018 -20.217 - - - -
17 1.021 -19.624 - - 184.66 35.08
18 1.013 -20.929 - - - -
19 0.956 -23.023 - - 328.42 88.26
20 1.009 -21.082 - - 384.98 37.72
21 1.015 -20.693 - - - -
22 1.015 -21.207 - - - -
23 0.959 -23.150 - - - -
24 0.916 -25.111 - - 158.76 95.44
25 0.931 -26.928 - - 209.50 81.06
26 0.940 -25.594 - - 5.70 2.32
27 0.940 -25.557 - - - -
28 1.031 -17.540 - - 376.42 2.84
29 1.005 -21.234 - - - -
30 0.949 -23.144 - - - -
31 0.897 -25.883 - - 209.62 132.98
32 0.942 -25.416 - - 86.88 10.04
33 0.942 -25.270 - - 64.16 15.10
34 0.943 -24.856 - - - -
35 1.066 -15.234 - - - -
36 1.050 -10.129 372.30 242.73 - -
37 1.062 -15.636 - - - -
38 1.061 -15.734 - - - -
39 1.026 -16.927 - - 133.66 48.04
40 1.064 -15.001 - - - -
41 1.057 -15.588 - - - -
42 1.036 -15.325 - - 4.86 50.30
43 1.044 -17.609 - - - -
44 1.034 -19.253 - - 159.98 47.10
45 1.038 -19.404 - - 174.24 26.14
46 1.070 -10.874 - - - -
47 1.045 -17.429 - - - -
48 1.061 -15.677 - - - -
49 1.055 -16.905 - - 129.16 27.56
50 1.055 -16.793 - - 117.48 24.14
51 1.063 -14.846 - - - -
52 1.015 -10.080 418.80 127.24 - -
53 1.040 -12.065 - - 200.00 62.70
54 1.040 -12.089 - - - -
55 1.025 -6.953 511.90 82.71 - -
56 1.051 -10.878 - - -107.66 73.70
57 1.020 -6.728 325.80 -22.26 - -
58 1.059 -7.510 - - 454.32 102.86
59 1.050 0.000* 858.16 138.03 - -
60 1.069 -13.198 - - 84.76 11.34
61 1.059 -14.259 - - 57.20 6.98
62 1.071 -11.434 - - 116.66 11.04
63 1.050 -7.841 442.10 24.36 - -
64 1.064 -9.259 - - - -
-------- -------- -------- --------
Total: 4185.66 773.83 4144.91 1152.91
================================================================================
| Branch Data |
================================================================================
Brnch From To From Bus Injection To Bus Injection Loss (I^2 * Z)
# Bus Bus P (MW) Q (MVAr) P (MW) Q (MVAr) P (MW) Q (MVAr)
----- ----- ----- -------- -------- -------- -------- -------- --------
1 1 20 37.18 -23.56 -37.13 8.79 0.052 0.63
2 1 20 37.18 -23.56 -37.13 8.79 0.052 0.63
3 6 10 405.37 26.21 -404.08 -30.19 1.282 22.44
4 7 14 47.35 10.40 -47.34 -29.27 0.015 0.24
5 10 20 296.29 -17.28 -295.61 2.89 0.688 11.61
6 14 29 270.88 7.95 -269.30 -19.61 1.581 25.16
7 16 21 107.56 26.88 -107.48 -39.52 0.086 1.01
8 17 28 -292.22 -63.15 293.15 51.86 0.930 11.24
9 18 61 -374.38 -107.69 378.96 101.52 4.577 48.63
10 18 21 -25.02 -23.91 25.02 -9.08 0.009 0.11
11 19 30 42.92 84.79 -42.80 -88.68 0.116 0.69
12 19 23 27.37 -57.64 -27.33 54.06 0.039 0.23
13 20 29 49.67 76.09 -49.64 -82.48 0.026 0.51
14 20 21 -82.39 -61.46 82.45 48.59 0.067 0.85
15 20 22 17.61 -72.82 -17.57 55.71 0.039 0.41
16 22 47 -330.21 -118.33 332.29 104.55 2.077 25.04
17 28 54 -671.81 19.66 677.34 17.00 5.529 64.22
18 28 43 2.24 -74.36 -2.20 51.33 0.048 0.79
19 35 37 315.23 128.82 -315.03 -131.02 0.205 2.67
20 35 38 110.51 44.18 -110.43 -55.76 0.078 1.20
21 35 40 -53.44 24.94 53.47 -40.41 0.024 0.28
22 37 43 306.73 125.92 -305.94 -128.09 0.794 12.70
23 37 48 8.29 5.09 -8.29 -21.74 0.002 0.02
24 38 48 -23.33 4.52 23.34 -13.27 0.002 0.03
25 40 51 -68.74 22.82 68.76 -30.87 0.019 0.21
26 41 51 -349.55 -123.86 350.04 120.92 0.489 5.26
27 41 47 359.94 90.46 -358.81 -96.82 1.125 12.63
28 43 47 -26.52 -7.23 26.53 -7.74 0.005 0.08
29 46 58 -263.28 -1.03 263.93 -118.84 0.645 16.13
30 46 48 263.28 1.03 -261.88 -22.04 1.402 22.13
31 53 64 -135.65 -83.49 136.31 13.95 0.663 7.79
32 54 56 -229.79 39.99 233.36 -51.57 3.568 4.38
33 56 61 199.48 -68.17 -198.29 23.11 1.198 12.09
34 58 64 136.48 -66.24 -136.31 -13.95 0.171 4.28
35 1 2 0.00 -0.00 -0.00 0.00 0.000 0.00
36 7 6 -47.35 -10.40 47.35 10.41 0.000 0.00
37 54 53 -447.55 -56.98 447.55 57.17 0.000 0.19
38 1 3 -74.36 47.13 74.42 -46.07 0.054 1.06
39 3 5 -463.46 -22.55 465.40 61.44 1.944 38.89
40 2 4 0.00 0.00 -0.00 -0.00 0.000 0.00
41 6 8 -226.36 -18.31 226.36 33.28 0.000 14.97
42 6 9 -226.36 -18.31 226.36 33.28 0.000 14.97
43 11 10 -59.46 -67.44 59.52 69.05 0.057 1.60
44 10 13 48.27 -21.58 -48.25 22.06 0.014 0.49
45 11 13 -27.53 25.64 27.53 -25.51 0.000 0.14
46 12 13 -20.72 -3.40 20.72 3.44 0.000 0.04
47 14 15 -325.29 -16.60 325.80 44.60 0.515 28.00
48 17 16 107.56 28.07 -107.56 -26.88 0.000 1.19
49 19 18 -199.35 -57.70 199.70 65.80 0.345 8.10
50 19 18 -199.35 -57.70 199.70 65.80 0.345 8.10
51 23 22 -173.65 -50.54 173.89 57.07 0.244 6.53
52 23 22 -173.65 -50.54 173.89 57.07 0.244 6.53
53 24 23 -158.76 -95.44 159.11 103.22 0.352 7.78
54 23 27 215.51 100.13 -215.20 -89.20 0.307 10.93
55 25 27 -209.50 -81.06 209.50 86.88 0.006 5.82
56 26 27 -5.70 -2.32 5.70 2.32 0.000 0.00
57 30 29 -159.25 -45.18 159.47 51.05 0.222 5.86
58 30 29 -159.25 -45.18 159.47 51.05 0.222 5.86
59 31 30 -209.62 -132.98 210.13 147.85 0.513 14.87
60 30 34 151.17 31.20 -151.04 -26.49 0.132 4.71
61 32 34 -86.88 -10.04 86.88 10.90 0.001 0.86
62 33 34 -64.16 -15.10 64.16 15.59 0.000 0.49
63 35 36 -372.30 -197.94 372.30 242.73 -0.000 44.79
64 39 38 -133.66 -48.04 133.77 51.25 0.109 3.21
65 42 40 -15.27 -17.38 15.27 17.59 0.008 0.21
66 42 41 10.41 -32.92 -10.39 33.39 0.018 0.48
67 44 43 -159.98 -47.10 160.19 52.20 0.208 5.10
68 45 43 -174.24 -26.14 174.47 31.79 0.231 5.65
69 49 48 -129.16 -27.56 129.27 30.49 0.110 2.93
70 50 48 -117.48 -24.14 117.57 26.55 0.090 2.41
71 51 52 -418.80 -90.05 418.80 127.24 0.000 37.19
72 53 55 -511.90 -36.38 511.90 82.71 0.000 46.32
73 56 57 -325.18 46.04 325.80 -22.26 0.615 23.78
74 58 59 -854.73 -24.28 858.16 138.03 3.426 113.75
75 62 63 -440.68 3.38 442.10 24.36 1.423 27.74
76 60 62 -232.59 7.46 233.26 -0.30 0.664 7.16
77 61 60 -147.53 -50.99 147.83 54.18 0.304 3.19
78 61 62 -90.34 -9.40 90.76 13.99 0.419 4.59
-------- --------
Total: 40.743 832.82
diary off