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ABSTRACT

Motivation: At a recent meeting’, the wavelet transform
was depicted as a small child kicking back at its father, the
Fourier transform. Wavelets are more efficient and faster
than Fourier methods in capturing the essence of data.
Nowadays there is a growing interest in using wavelets
in the analysis of biological sequences and molecular
biology-related signals.

Results: This review is intended to summarize the poten-
tial of state of the art wavelets, and in particular wavelet
statistical methodology, in different areas of molecular bi-
ology: genome sequence, protein structure and microarray
data analysis. | conclude by discussing the use of wavelets
in modeling biological structures.

Contact: plio@hgmp.mrc.ac.uk

INTRODUCTION

MATHEMATICAL BACKGROUND
Wavelet transform

Let us set the scene with two biological examples. Hearing
entails a transform from time to frequency accomplished
by the hairy cells in the cochlear and neurons in the
auditive cortex (Schreinest al., 2000). In vision, the red,
green and blue cone receptors in the retina pass along
signals for the visual cortex where color composition
occurs (Nijhawan, 1997). Although there is no area of
research in which Fourier transform (FT) has not proved
useful, nature is still ahead of mathematics in transforming
asignal from the time or space domain into the frequency
domain (see the discussion on natural stimulus statistics in
Donoho and Flesia, 2001). The wavelet transform (WT)
is relatively new (early 80s) and has some similarities
with the Fourier transform (FT). Wavelets differ from
Fourier methods in that they allow the localization of
a dgnal in both time and frequency. Figure la shows

The name wavelets means small waves (the sinusoidbe difference between the FT, windowed FT and WT
used in Fourier analysis are ‘big waves’), and, in shortjn terms of time and frequency localization. A WT of
a wawelet is an oscillation that decays quickly. The field @ signal typically outperforms an FT when the signal
has progressed so rapidly that a widely accepted definitiodnder consideration contains discontinuities and sharp
of wavelets is very general: ‘Wavelets are building blocksSPikes. In wavelet theory, a function is represented by
that can quickly decorrelate data’ (Sweldens, 1996). an infinite series expansion in terms of dilated and
In recent years, wavelets analysis has been app“et(qanslated versmn_ofabasmfunctl_(brmalled the ‘mother’
to a large variety of biomedical signals (Aldroubi and Wavelet (Daubechies, 1992; Chui, 1992; Mallat, 1989).

Unser, 1996), and there is a growing interest in using;he simplest example of a wavelet basis is the Haar

wavelets in the analysis of sequence and functiona asis (Figure 1b, left); other frequently used wavelet bases

genomics data. Therefore, this review is intended to giv@re those developed by [.)aubec_hles. (1992, Flgure_ 1b,

a relatively accessible introduction to wavelet analysis”ght)' Several_wavelet fam|I|es', with different properties

for bioinformaticians and computational biologists The(orthogonal, biorthogonal, s_emmrthogonal) have recently
P gIsts. been developed (Daubechies, 1992; Chui, 1992; Mallat,

paper first establishes some necessary basic mathemati(i@lgg)_ The continuous wavelet transform, (CWT) for a
background and terminology relating to wavelets. Afterg, . tion f () is defined as:

briefly mentioning the more well-established techniques
of wavelets in statistics, | focus on the applications and
perspectives in different molecular biology areas.

CWT(f, a, b) :a—l/zfoo f(t)zﬁ(%)dt

—00

wherea (the scale parametegO, b (the translation pa-
TXIX SMC 2001 ‘Wavelets in Statistics’, Vico Equense, Naples, |, 2-7 rameter)e.m. The CWT maps a _Or_]e‘dlmensmna_l Slgnajl
April 2001. to a two-dimensional time-scale joint representation. It is
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Fourier Local Fourier ~ Wavelet transform matrix form we can represent the DWT (Mallat, 1989)
w4 w4 o 4 through an orthogonal matrix
I W W
(@) R N R _
t t ¢+ whereJ is the largest level of the transform, andl
indicates transpose. A DWT is applied to a vecxoof
0 015 observations ad = WX and decomposes the data into
: ! 01} sets of wavelet coefficients
|
005 1] 005 T 4T T TT
(I o dz[dl,dz,,dJ,CJ]
L .
0 005 with dj = WjX, ¢; = VsX. At scaler; = 2i-1
ox or level j, there aren/2! coefficientsdj, which are
-005 ' associated with changes in averages of the data on a
(b) —015 scalerj At with At the time interval between consecutive

015 os | 02 o5 . observations. Each wavelet coefficient at that level tells us
how much a weighted average of the data changes from
a particular time period of effective lengthj At to the
Fig. 1. According to the Heisenberg uncertainty principle, we Next one. Scaling coefficients; are instead associated
cannot know precisely both the position in time (or space) and thavith averages of the data on scalkes 1At and higher,
frequency of a signal. With the Fourier transform, the localization ofwith J the largest level of the DWT. The WT is a
asignal that occurs in a short time interval is lost when transformeccymulative measure of the variations in the data over
to frequency (a, left); the windowed Fourier transform usually regions proportional to the wavelet scales; for increasing
represents a remarkable improvement (a, central). With Wavelet§,a|ues of j, the coefficients describe features at lower
the time/frequency plane is patched with rectangles of diﬁeremfrequency ranges and larger time periods.

shape. At low frequency the height of the boxes are longer (poor In the undecimated WT there anecoefficients at every

frequency resolution) and widths are shorter (better time resolution% le i h b f ffici d d
(a, right). Mother wavelet (line) and a related function, termed cale, 1.e. the number of coeificients does not decrease

Father wavelet (dash) of Haar wavelet basis (b, left) and Daubechig¥ith the level (Mallat, 1989; Shensa, 1992). Although
with N = 4 (b, right). See Daubechies (1992), Chui (1992), Mallat the transformation is not orthogonal anymore other
(1989) for a comprehensive description of the relation betweeruseful features are gained. Coefficients are translation-
Father and Mother wavelets. equivariant, i.e. circularly shifting of the data is reflected

in the same shifting of the coefficients. The undecimated

WT is capable of handling data with arbitrary size, i.e. it
calculated by continuously shifting a continuously scal-does not require the sample sizé¢o be a power of two.
able function over a signal and calculating the correlaThese two properties are particularly useful in biological
tion between the two. The resulting wavelet coefficientssequence analysis because they allow precise correspon-
are highly redundant. Because in molecular biology an@ence between wavelet coefficients and sequence patterns.
genetics we are more concerned with discretely samplefl js noteworthy that the undecimated WT is superior to
rather than continuous funCtiOI’lS, let us brleﬂy SUmmariZQhe ordinary DWT in many statistical app”cations (Nason
first the main qualitative features of the discrete wavelebng Silverman, 1995; Nas@hal., 2000).
transform (DWT).

Multiresolution analysis

The discrete wavelet transform A WT leads to an additive decomposition of a signal into

A WT decomposes a signal into several groups (vectors) series of different components describing smooth and
of coefficients. Different coefficient vectors contain infor- rough features of the signal. In fact we have

mation about characteristics of the sequence at different

scales. Coefficients at coarse scales capture gross and J J

global features of the signal while coefficients at fine X =w'd = E :W.Td- +Viey = E D; +C;j
. . . : j Y J j

scales contain local details. The DWT is an economical =1 j=1

way to compute the WT, because it is computed only on

a dyadic grid of points, where the subsampling is at awith D;j the detail of the signal describing changes at the
different rate for different scales. The DWT is commonly scaler; and C; the smooth component associated with
introduced using a matrix or a computational form. Invariations at scales;.1 and higher.
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Table 1. Software for wavelet analysis

Software State Source Reference Web address

LiftPack Free AnsiC Fernandex al. (1996) http://www.cs.sc.edufernandel/liftpack

LastWave Free AnsiC emmanuel.bacry@polytechnique.fr http://lwww.cmap.polytechnigbadnj/LastWave
Waili Free C++ Uytterhoevest al. (1998) http://www.cs.kuleuven.ac.betavelets

Wavelet Explorer Com Mathematica http://www.wolfram.com http://www.wolfram.com

Wavelab Free Matlab Buckheit and Donoho (1995) http://www.stat.stanford-edwklab

Wavebox Com Matlab Taswell (1995) http://www.wavbox.com

Smoothing Toolbox Free Matlab Antoniadisal. (2001) http://www.Imc.imag.fr/'SMS/software.html

Rice Wavelet Toolbox Free Matlab http://www.dsp.rice.edu/publications http://www.dsp.rice.edu/software/RWT
Wavelet Toolbox Com Matlab http://www.mathworks.com http://www.mathworks.com

Wavelet Software Free Matlab Torrance and Compo (1998) http://paos.colorado.edu/research/wavelets
Curvelets256 Toolbox Free Matlab Candes and Donoho (1999) http://www.acm.caltecterninanuel
Wavethresh Free Splus Nason and Silverman (1995) http://www.stats.bris-awavethresh

S+ Wavelets Toolkit Com Splus Bruce and Gao (1996) http:/iwww.insightful.com

Thresh Free Splus Ogden and Parzen (1996) http://lib.stat.cmu.edu/S/thresh

Wavepot Free Splus Raimondo (2002) http://www.maths.usyd.edu.au:8000/u/marcr/Wavepot

Note: List of useful software related to the wavelet techniques described in
freeware), software platform, reference, web address.

Implementation of the DWT
From a computational point of view, the DWT proceeds

this review. Entries are: software name, availability (Com, cdfneegrcial

1996; Percival and Walden, 2000; Nasarl., 2000) and
estimation and simulation of fractional Brownian motion

by recursively applying two convolution functions, known (Flandrin, 1992). ,
as quadrature mirror filters, each producing an output A recent study on measles dynamics demonstrates how

stream that is half the length of the original input, until Wavelet phase analysis has considerable potential as tool
the resolution level zero is reached (Mallat, 1989). Thigor ecological time series and spatial analyses (Greefell
algorithm, termed the ‘pyramid’ algorithm, is faster than al., 200_1_). In b|0|nformat|csz many algorithms for pattern
the fast FT, being of complexities, B)(and Of log, n), recognition are based on hidden Markqv models (HMM)
respectively. If the quadrature mirror filters are applied © neéural networks. Itis worth mentioning that there are
times, at each levgl = 1, ..., J the transform produces wavelet denoising algorithms based on HMM (see http:
two vectors of coefficients;; of scaling coefficients and /Www-dsp.rice.edu/publications).

d; of wavelet coefficients. The vectdy is kept whilec;
is processed through the two filters. At the last level = ) ]
bothc; andd; are kept. A pyramid algorithm exists for In statistics, the recovery of the underlymg_ function fro_m
2D data also (Mallat, 1989). An inverse wavelet tranform@ NOISY signal is generally modeled using regression
can be defined and allows reconstruction of a signal fronf'0delS; several authors have proposed wavelet estimators

its wavelet decomposition. A variety of software availablelPonoho and Johnstone, 1994, 1998; Nason, 1996
from the web is listed in Table 1. Amato and Vuza, 1997; Antoniadis, 1996; Antoniadis

et al., 2001). Consider the standard univariate regres-
sion: y; f(Xi) + €, wherei = 1,...,n, and ¢
WAVELET STATISTICS AND MODELING are independeniN(0, 0?) random variables;f is the
Many researchers feel that there is a need to use morgue’ function. We can reformulate the problem in terms
statistics in bioinformatics. Therefore, | describe brieflyof wavelet coefficientsijx = wjk + €jk, where j is
(and give references for) some wavelet applications inhe level ( = 0,..., | — 1), andk, the displacement
statistics that might be important in bioinformatics. For(k = 0, ..., 2] — 1). It is often reasonable to assume that
more complete coverage, see Vidakovic (1999), Hardlenly a few large coefficients contain information about
et al. (1998) and Percival and Walden (2000). Waveletthe underlying function, while small coefficients can be
techniques are now used in many statistical areas, faattributed to noise. Shrinkage consists in attenuating or
example, density estimation (Johnstome al., 1992; eliminating the smaller wavelet coefficients and recon-
Donohoet al., 1996a), nonparametric regression (Donohostructing the profile using mainly the most significant
and Johnstone, 1994, 1998; Donoleb al., 1996b), wavelet coefficients and all the scaling coefficients.
change-point problems (Ogden and Parzen, 1996; Wan&everal shrinkage approaches have been proposed. For
1995; Raimondo, 1998), time series analysis (Morettinexample, the ‘hard’ threshold approach selects coefficients

Dealing with noise in biological signals
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| : : : s  time or space scales. An estimate of the wavelet variance
05| | o8 2 ' at a given scale is obtained by summing the squares of
‘ . | the wavelet coefficients and dividing by the number of
. _ | them. With bivariate signals, the wavelet covariance is
03 | 2 . . given by the sum at a given level, of the cross-products of
, s 02 : 3 : - coefficients with the same location (Lindsetyal., 1996;
' t ¥ Coaw Serroukh and Walden, 2000). In a similar way, wavelet
10 10 10 cross-covariance, correlation and cross-correlation can be
computed (Whitchegt al., 2000; Percival and Walden,
2000). It is worth mentioning that a plot of the sum of
the squares of the coefficients at each scale is termed a
5| | 5 - scalogram (Flandrin, 1988).

oo T * % ' MOLECULAR BIOLOGY DATA AND
WAVELETS

Fig. 2. Statistical properties of wavelets. Upper series: a HeavisindVe briefly review the most interesting applications in
function is sampled at 2048 data points uniformly spacegoft]  the following areas: genome sequence analysis, protein
(left); then, the values ofy(t + 1) are plotted againsy(t) for  structure investigation and gene expression data analysis.
the same function in time (center; correlatien 0.99) and the .
values ofd(t + 1) are plotted againd(t) for the same function Genome sequence analysis
in wavelet domain using Daubechiés = 4 (right; correlation=  Several authors showed that wavelets can be useful in
—0.14); bottom series: a noisy HeaviSine function (left) is shrinkeddetecting patterns in DNA sequences (Arnecaoal.,
using ‘hard’ universgl (center) and ‘soft’ universal thresholds (using]_996’ 1998; Dodiret al., 2000). In particular, Auditt
DaubechiedN = 4; right). al. (2001, 2002) analyzed bending properties of sequences
and provided evidence that the existence of long range
] ) ) ) ] . correlations in the small-scale regime (10—200 bp) which
using a ‘keep or kill" policy. Using ‘soft’ thresholding, if 516 actually observed in eukaryotic genomes, in contrast
the magnitude of the wavelet coefficient is greater thany their absence in eubacterial genomes, depends on
(less than, respectively) the threshold, the coefficient i\, cleosome patterns. diand Vannucci (2000b) showed
shrunk toward zero by an amount that depends on hoy,at wavelet variance decomposition of bacterial genome
large the magnitude of the coefficient is (is set to zerogequences coded as G;C1 and AT = 0 (or —1)
respectively). Donoho and Johnstone (1994) proposed thgy reveal the location of pathogenicity islands (see also

‘universal’ thresholdiun = o'\/2logn, and showed that  \/annucci and Lio, 2001).
it performs very well in both hard and soft thresholding.

Thresholds can also be chosen based on the data using’&otein structure investigation

hypothesis testing procedure (Ogden and Parzen, 199avelets have been applied to all aspects of protein struc-
1996; Abramovich and Benjamini, 1996; Raimondo,tural investigations: primary sequence evolution (Moro-
2002). Data-adaptive thresholds might become veryovet al., 2000; Rzhetsky and Morozov, 2001), secondary
important in analyzing molecular biological data becausgLio and Vannucci, 2000a) and tertiary structure determi-
hypothesis testing procedures can be used to test th&tion (Murrayet al., 2002; Mandellet al., 1997, 1998:
appropriateness of various thresholds to the data undefirakawaet al., 1999), refinement of X-ray crystallogra-
different biological assumptions (see for exampl® Li phy (Main and Wilson, 2000; Ferrest al., 1998), drug
and Vannucci, 2000a). Finally, it is worth mentioning design and visualization (Carson, 1996). Mandi/al.

that several authors have proposed Bayesian threshol@s997, 1998) showed that the phase plots of Morlet WT
and have reported interesting results (Abramowchl.,  of the hydrophobic profiles of amino acid sequences can
1998; Vidakovic, 1999, and references therein). Figure Je related to the content of secondary structures (alpha
illustrates the decorrelation (upper series) and denoisingelices and beta sheets) and can be used to classify pro-

(bottom series) properties of wavelets. teins. They also investigated fluctuations of hydrophobic-
) i o ity along the sequence to derive information on channels,
Estimating variability over scales pore and receptors. Recently Murrayal. (2002) used

A wawelet variance is a scale-by-scale decompositiothe CWT to analyze the hydrophobicity and relative ac-
of the variance of a signal (Percival, 1995). Replacingcessible surface area of a variety of repeating protein mo-
‘global’ variability with variability over scales allows us tifs such as TIM barrels, propellor blades, coiled coils and
to investigate the effects of constraints acting at differenteucine repeats.
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Microarray data analysis PERSPECTIVES: VERTICAL INTEGRATION OF
Microarray technology allows us to analyze the expresMOLECULAR DATA AND PHYSIOLOGY

sion patterns of hundreds of genes. The use of statistidd/ith the completion of the human and mouse genome

is the key to extracting useful information from this tech- projects the attention of bioinformaticians will move to

nology. Because of this, CAMDA, critical assessment infunctional genomics and to the integration of molecular

microarray data analysis (http:/bioinformatics.duke.edufnd physiological data.

CAMDA) has been established to provide a community- ) i . i

wide critical assessment of different techniques used ¥l 0deling biological microstructures

microarray data analysis. Klevecz (2000) used wavelet dgRecently, wavelets have been used to analyze the chro-

composition and denoising techniques to analyze expregnatin distribution of the nucleus of breast tissue after Feul-

sion microarray data and found that the expression of mogten coloring staining (Van De Wouwet al., 2000). The

yeast genes oscillate, including both cell cycle regulate@nalysis of the tissue and cell surface texture allows the

genes and ones not related to the cell cycle. The authgharacterization of invasive breast cancer and other cel-

found two major periodicities, one of40 minutes and a lular pathologies and represents a very active area of re-

second one of~80 minutes and hypothesized that part Ofsearch: See also_bt al., 200.1 and the_anqua_s Of structure

the noise in expression microarray data may depend on t d morpho_gemc regulation organization in filamentous

. . ! : ungal colonies by Jones (1996).

genes being expressed with oscillatory dynamics. . I .

Microarrav data analvsi n also benefit from dat Wavelets seem more suitable for describing scaling
croarray data analysis can aiso bene om da _aoiological structures and signals than other mathematical
compression. It is general practice to keep entire mis,

! L - "transforms because wavelet basis functions can have
croarray images for reanalysis in case better statisticg|igtarent complex shapes, each suitable for a different

methods become availat_)Ie. Wavelet-based _te_chniques &fiss of problems. There is on going research on defin-
now the new compression standard: the lifting schem(ﬁqg wavelets for general geometries (curves, surfaces,
is the basis of JPEG2000 (see http://www.jpeg.org fomanifolds), over irregular sampling and for particular
more details). Previous JPEG algorithms worked in term§r0b|ems_ For example, curvelets (useful for curved
of eight-by-eight squares; what makes wavelets bettesdges) and ridgelets (useful for straight edges) have
than other compression methods is their ability to adapélements distributed across a range of scales and location
to the size and location of regions in the imag&ndten along with orientations (Candes and Donoho, 1999).
and Yu (2000) proposed a microarray image compressiofhese elements have increasing numbers of distinct
technique, termed ‘comprestimation’, with a lossless odirections as the scales go finer. The need for these new
lossy coded data structure. The authors discussed thigathematical transforms comes in part from study of the
question of optimal statistical estimation based on lossjjuman visual system using natural stimulus statistics.
compressed data and determined an upper bound on t&é&lges are the dominant features both in human perception
minimum achievable loss of estimation efficiency due(providing segmentation into objects) and in mathematical

to compression. Myasnikowet al. (2001) used wavelets settings (Donoho and Flesia, 2001). Therefore, wavelet

to analyze gene expression measured using tagged dmethods (and extensions beyond wavelets) appear to be a

tibodies in a set of embryos. These authors obtained gatura_l way to ach!eve vgst improvements in the quality
detailed gene expression map of a morphogenetic fieI8f statistical analysis of biological structures and patterns.

from fragmentary data. Recently Efrehal. (2001) have Physiome data?

hown that the ‘False Discovery Rate’ (FDR) i ver o .
shown that the ‘False Discovery Rate’ ( )is a ve yThere are many examples of application of wavelets in

useful inferential approach in the analysis of microarray hvsioloav. Eor example. Diserbo and colleaques used
data. The FDR is a relatively new and important idea inp Y gy- p'e, 9

) . ) . . wavelets to localize stationary segments in long single-
multiple comparisons: the FDR is the expected Proportion., - nnel current recordings and infer the gating channel

_of r.ej.ected hypotheses that are falsely rejec_ted (Benﬁ]echanisms (Diserbet al., 2000). Alt et al. (1998)
jamini and Hochberg, 1995). When the model is sparseynaiyzed the courtship signals in different species of
FDR-like selection yields estimators with strong 'argeDrosophiIa and confirmed original findings by Kyriacou
sample adaptivity properties. One natural applicatioyng Hall (1986) that mutations in ther (period) gene

of FDR is threshold selection in wavelet denoising. Inajter the interpulse intervals in songs. Currently, there is
wavelet thresholding, FDR is the proportion of wavelet considerable interest in integrating quantitative biological
coefficients erroneously included in the reconstructiorinformation at different size scales, from molecules to
among those included. This approach might lead to othetells, tissues, organs and organisms. A hint at the potential
applications of wavelets in microarray data analysis. of wavelets in modeling the scaling behavior of biological
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systems comes from the results of wavelet-based modelingudit,B., Vaillant,C., Arneodo,A., d’Aubenton-Carafa,Y. and
of physical systems showing scaling behavior in, for Thermes,C. (2002) Long-range correlations between DNA

example, turbulence (Katuwk al., 2000). bending sites: relation to the structure and dynamics of
nucleosomesl. Mol. Biol., 316, 903-918.

Benjamini,Y. and Hochberg,Y. (1995) Controlling the false discov-
CONCLUSION ery rate: a practical and powerful approach to multiple testing.
The aim of this paper was to increase the familiarity Roy. Satist. Soc. B, 57, 289-300.

of wavelet techniques in the bioinformatics community Bruce,A.G. and Gao,H.-Y. (199@pplied Wavelet Analysis with S-
and to provide useful references to the literature and to Plus. Springer, New York.

available software. In conclusion, | am delighted to reportBuckheit,J.B. and Donoho,D.L. (1995) WaveLab and reproducible
that the application of wavelets in molecular biology is research. In Antoniadis,A. and Oppenheim,G. (edéjvelets

a thriving field of research. It has two important and and Statistics, Lecture Notes in Statistics, 103, Springer, New
linked benefits: an improved ability for capturing hidden _ Yo'k, pp. 55-81. _ _
components from biological data and a better link betweefy214eS:E-J. and Donoho,D.L. (1999) Ridgelets: a key to higher
biological systems and the mathematics objects used to dimension intermittency®Phil. Trans. R Soc. Lond. A, 357,

d ibe th 2495-2509.
escribe them. Carson,M. (1996) Wavelets and molecular structdr&Computer-

Aided Molecular Design, 10, 273—-283.
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