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ABSTRACT
Motivation: At a recent meeting†, the wavelet transform
was depicted as a small child kicking back at its father, the
Fourier transform. Wavelets are more efficient and faster
than Fourier methods in capturing the essence of data.
Nowadays there is a growing interest in using wavelets
in the analysis of biological sequences and molecular
biology-related signals.

Results: This review is intended to summarize the poten-
tial of state of the art wavelets, and in particular wavelet
statistical methodology, in different areas of molecular bi-
ology: genome sequence, protein structure and microarray
data analysis. I conclude by discussing the use of wavelets
in modeling biological structures.
Contact: plio@hgmp.mrc.ac.uk

INTRODUCTION
The name wavelets means small waves (the sinusoids
used in Fourier analysis are ‘big waves’), and, in short,
a wavelet is an oscillation that decays quickly. The field
has progressed so rapidly that a widely accepted definition
of wavelets is very general: ‘Wavelets are building blocks
that can quickly decorrelate data’ (Sweldens, 1996).

In recent years, wavelets analysis has been applied
to a large variety of biomedical signals (Aldroubi and
Unser, 1996), and there is a growing interest in using
wavelets in the analysis of sequence and functional
genomics data. Therefore, this review is intended to give
a relatively accessible introduction to wavelet analysis
for bioinformaticians and computational biologists. The
paper first establishes some necessary basic mathematical
background and terminology relating to wavelets. After
briefly mentioning the more well-established techniques
of wavelets in statistics, I focus on the applications and
perspectives in different molecular biology areas.

† XIX SMC 2001 ‘Wavelets in Statistics’, Vico Equense, Naples, I, 2–7
April 2001.

MATHEMATICAL BACKGROUND
Wavelet transform
Let us set the scene with two biological examples. Hearing
entails a transform from time to frequency accomplished
by the hairy cells in the cochlear and neurons in the
auditive cortex (Schreineret al., 2000). In vision, the red,
green and blue cone receptors in the retina pass along
signals for the visual cortex where color composition
occurs (Nijhawan, 1997). Although there is no area of
research in which Fourier transform (FT) has not proved
useful, nature is still ahead of mathematics in transforming
a signal from the time or space domain into the frequency
domain (see the discussion on natural stimulus statistics in
Donoho and Flesia, 2001). The wavelet transform (WT)
is relatively new (early 80s) and has some similarities
with the Fourier transform (FT). Wavelets differ from
Fourier methods in that they allow the localization of
a signal in both time and frequency. Figure 1a shows
the difference between the FT, windowed FT and WT
in terms of time and frequency localization. A WT of
a signal typically outperforms an FT when the signal
under consideration contains discontinuities and sharp
spikes. In wavelet theory, a function is represented by
an infinite series expansion in terms of dilated and
translated version of a basic functionψ called the ‘mother’
wavelet (Daubechies, 1992; Chui, 1992; Mallat, 1989).
The simplest example of a wavelet basis is the Haar
basis (Figure 1b, left); other frequently used wavelet bases
are those developed by Daubechies (1992, Figure 1b,
right). Several wavelet families, with different properties
(orthogonal, biorthogonal, semiorthogonal) have recently
been developed (Daubechies, 1992; Chui, 1992; Mallat,
1999). The continuous wavelet transform, (CWT) for a
function f (t) is defined as:

CW T ( f, a, b) = a−1/2
∫ ∞

−∞
f (t)ψ

(
t − b

a

)
dt

wherea (the scale parameter)>0, b (the translation pa-
rameter)∈ �. The CWT maps a one-dimensional signal
to a two-dimensional time-scale joint representation. It is
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Fig. 1. According to the Heisenberg uncertainty principle, we
cannot know precisely both the position in time (or space) and the
frequency of a signal. With the Fourier transform, the localization of
asignal that occurs in a short time interval is lost when transformed
to frequency (a, left); the windowed Fourier transform usually
represents a remarkable improvement (a, central). With wavelets,
the time/frequency plane is patched with rectangles of different
shape. At low frequency the height of the boxes are longer (poor
frequency resolution) and widths are shorter (better time resolution)
(a, right). Mother wavelet (line) and a related function, termed
Father wavelet (dash) of Haar wavelet basis (b, left) and Daubechies
with N = 4 (b, right). See Daubechies (1992), Chui (1992), Mallat
(1989) for a comprehensive description of the relation between
Father and Mother wavelets.

calculated by continuously shifting a continuously scal-
able function over a signal and calculating the correla-
tion between the two. The resulting wavelet coefficients
are highly redundant. Because in molecular biology and
genetics we are more concerned with discretely sampled
rather than continuous functions, let us briefly summarize
first the main qualitative features of the discrete wavelet
transform (DWT).

The discrete wavelet transform
A WT decomposes a signal into several groups (vectors)
of coefficients. Different coefficient vectors contain infor-
mation about characteristics of the sequence at different
scales. Coefficients at coarse scales capture gross and
global features of the signal while coefficients at fine
scales contain local details. The DWT is an economical
way to compute the WT, because it is computed only on
a dyadic grid of points, where the subsampling is at a
different rate for different scales. The DWT is commonly
introduced using a matrix or a computational form. In

matrix form we can represent the DWT (Mallat, 1989)
through an orthogonal matrix

W = [W T
1 , W T

2 , . . . , W T
J , VJ ]T,

where J is the largest level of the transform, and ‘T’
indicates transpose. A DWT is applied to a vectorX of
observations asd = W X and decomposes the data into
sets of wavelet coefficients

d = [dT
1 , dT

2 , . . . , dT
J , cT

J ]T

with d j = W j X , cJ = VJ X . At scale τ j = 2 j−1,
or level j , there aren/2 j coefficients d j , which are
associated with changes in averages of the data on a
scaleτ j�t with �t the time interval between consecutive
observations. Each wavelet coefficient at that level tells us
how much a weighted average of the data changes from
a particular time period of effective lengthτ j�t to the
next one. Scaling coefficientscJ are instead associated
with averages of the data on scalesτJ+1�t and higher,
with J the largest level of the DWT. The WT is a
cumulative measure of the variations in the data over
regions proportional to the wavelet scales; for increasing
values of j , the coefficients describe features at lower
frequency ranges and larger time periods.

In the undecimated WT there aren coefficients at every
scale, i.e. the number of coefficients does not decrease
with the level (Mallat, 1989; Shensa, 1992). Although
the transformation is not orthogonal anymore other
useful features are gained. Coefficients are translation-
equivariant, i.e. circularly shifting of the data is reflected
in the same shifting of the coefficients. The undecimated
WT is capable of handling data with arbitrary size, i.e. it
does not require the sample sizen to be a power of two.
These two properties are particularly useful in biological
sequence analysis because they allow precise correspon-
dence between wavelet coefficients and sequence patterns.
It is noteworthy that the undecimated WT is superior to
the ordinary DWT in many statistical applications (Nason
and Silverman, 1995; Nasonet al., 2000).

Multiresolution analysis
A WT leads to an additive decomposition of a signal into
a series of different components describing smooth and
rough features of the signal. In fact we have

X = W Td =
J∑

j=1

W T
j d j + V T

J cJ =
J∑

j=1

D j + CJ

with D j the detail of the signal describing changes at the
scaleτ j and CJ the smooth component associated with
variations at scalesτJ+1 and higher.
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Table 1. Software for wavelet analysis

Software State Source Reference Web address

LiftPack Free Ansi C Fernandezet al. (1996) http://www.cs.sc.edu/∼fernandel/liftpack
LastWave Free AnsiC emmanuel.bacry@polytechnique.fr http://www.cmap.polytechnique.fr/∼bacry/LastWave
Waili Free C++ Uytterhoevenet al. (1998) http://www.cs.kuleuven.ac.be/∼wavelets
Wavelet Explorer Com Mathematica http://www.wolfram.com http://www.wolfram.com
Wavelab Free Matlab Buckheit and Donoho (1995) http://www.stat.stanford.edu/∼wavelab
Wavebox Com Matlab Taswell (1995) http://www.wavbox.com
Smoothing Toolbox Free Matlab Antoniadiset al. (2001) http://www.Imc.imag.fr/SMS/software.html
Rice Wavelet Toolbox Free Matlab http://www.dsp.rice.edu/publications http://www.dsp.rice.edu/software/RWT
Wavelet Toolbox Com Matlab http://www.mathworks.com http://www.mathworks.com
Wavelet Software Free Matlab Torrance and Compo (1998) http://paos.colorado.edu/research/wavelets
Curvelets256 Toolbox Free Matlab Candes and Donoho (1999) http://www.acm.caltech.edu/∼emmanuel
Wavethresh Free Splus Nason and Silverman (1995) http://www.stats.bris.ac.uk/∼wavethresh
S+ Wavelets Toolkit Com Splus Bruce and Gao (1996) http://www.insightful.com
Thresh Free Splus Ogden and Parzen (1996) http://lib.stat.cmu.edu/S/thresh
Wavepot Free Splus Raimondo (2002) http://www.maths.usyd.edu.au:8000/u/marcr/Wavepot

Note: List of useful software related to the wavelet techniques described in this review. Entries are: software name, availability (Com, commercial; Free,
freeware), software platform, reference, web address.

Implementation of the DWT
From a computational point of view, the DWT proceeds
by recursively applying two convolution functions, known
as quadrature mirror filters, each producing an output
stream that is half the length of the original input, until
the resolution level zero is reached (Mallat, 1989). This
algorithm, termed the ‘pyramid’ algorithm, is faster than
the fast FT, being of complexities, O(n) and O(n log2 n),
respectively. If the quadrature mirror filters are appliedJ
times, at each levelj = 1, . . . , J the transform produces
two vectors of coefficients,c j of scaling coefficients and
d j of wavelet coefficients. The vectord j is kept whilec j
is processed through the two filters. At the last levelJ ,
both c j andd j are kept. A pyramid algorithm exists for
2D data also (Mallat, 1989). An inverse wavelet tranform
can be defined and allows reconstruction of a signal from
its wavelet decomposition. A variety of software available
from the web is listed in Table 1.

WAVELET STATISTICS AND MODELING
Many researchers feel that there is a need to use more
statistics in bioinformatics. Therefore, I describe briefly
(and give references for) some wavelet applications in
statistics that might be important in bioinformatics. For
more complete coverage, see Vidakovic (1999), Hardle
et al. (1998) and Percival and Walden (2000). Wavelet
techniques are now used in many statistical areas, for
example, density estimation (Johnstoneet al., 1992;
Donohoet al., 1996a), nonparametric regression (Donoho
and Johnstone, 1994, 1998; Donohoet al., 1996b),
change-point problems (Ogden and Parzen, 1996; Wang,
1995; Raimondo, 1998), time series analysis (Morettin,

1996; Percival and Walden, 2000; Nasonet al., 2000) and
estimation and simulation of fractional Brownian motion
(Flandrin, 1992).

A recent study on measles dynamics demonstrates how
wavelet phase analysis has considerable potential as tool
for ecological time series and spatial analyses (Grenfellet
al., 2001). In bioinformatics, many algorithms for pattern
recognition are based on hidden Markov models (HMM)
or neural networks. It is worth mentioning that there are
wavelet denoising algorithms based on HMM (see http:
//www-dsp.rice.edu/publications).

Dealing with noise in biological signals
In statistics, the recovery of the underlying function from
a noisy signal is generally modeled using regression
models; several authors have proposed wavelet estimators
(Donoho and Johnstone, 1994, 1998; Nason, 1996;
Amato and Vuza, 1997; Antoniadis, 1996; Antoniadis
et al., 2001). Consider the standard univariate regres-
sion: yi = f (xi ) + εi , where i = 1, . . . , n, and εi
are independentN (0, σ 2) random variables;f is the
‘true’ function. We can reformulate the problem in terms
of wavelet coefficients:ŵ jk = w jk + ε jk , where j is
the level (j = 0, . . . , j − 1), andk, the displacement
(k = 0, . . . , 2 j − 1). It is often reasonable to assume that
only a few large coefficients contain information about
the underlying function, while small coefficients can be
attributed to noise. Shrinkage consists in attenuating or
eliminating the smaller wavelet coefficients and recon-
structing the profile using mainly the most significant
wavelet coefficients and all the scaling coefficients.
Several shrinkage approaches have been proposed. For
example, the ‘hard’ threshold approach selects coefficients
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Fig. 2. Statistical properties of wavelets. Upper series: a HeaviSine
function is sampled at 2048 data points uniformly spaced on[0, 1]
(left); then, the values ofy(t + 1) are plotted againsty(t) for
the same function in time (center; correlation= 0.99) and the
values ofd(t + 1) are plotted againstd(t) for the same function
in wavelet domain using DaubechiesN = 4 (right; correlation=
−0.14); bottom series: a noisy HeaviSine function (left) is shrinked
using ‘hard’ universal (center) and ‘soft’ universal thresholds (using
DaubechiesN = 4; right).

using a ‘keep or kill’ policy. Using ‘soft’ thresholding, if
the magnitude of the wavelet coefficient is greater than
(less than, respectively) the threshold, the coefficient is
shrunk toward zero by an amount that depends on how
large the magnitude of the coefficient is (is set to zero,
respectively). Donoho and Johnstone (1994) proposed the
‘universal’ threshold,λun = σ

√
2logn, and showed that

it performs very well in both hard and soft thresholding.
Thresholds can also be chosen based on the data using a
hypothesis testing procedure (Ogden and Parzen, 1995,
1996; Abramovich and Benjamini, 1996; Raimondo,
2002). Data-adaptive thresholds might become very
important in analyzing molecular biological data because
hypothesis testing procedures can be used to test the
appropriateness of various thresholds to the data under
different biological assumptions (see for example Liò
and Vannucci, 2000a). Finally, it is worth mentioning
that several authors have proposed Bayesian thresholds
and have reported interesting results (Abramovichet al.,
1998; Vidakovic, 1999, and references therein). Figure 2
illustrates the decorrelation (upper series) and denoising
(bottom series) properties of wavelets.

Estimating variability over scales
A wavelet variance is a scale-by-scale decomposition
of the variance of a signal (Percival, 1995). Replacing
‘global’ variability with variability over scales allows us
to investigate the effects of constraints acting at different

time or space scales. An estimate of the wavelet variance
at a given scale is obtained by summing the squares of
the wavelet coefficients and dividing by the number of
them. With bivariate signals, the wavelet covariance is
given by the sum at a given level, of the cross-products of
coefficients with the same location (Lindsayet al., 1996;
Serroukh and Walden, 2000). In a similar way, wavelet
cross-covariance, correlation and cross-correlation can be
computed (Whitcheret al., 2000; Percival and Walden,
2000). It is worth mentioning that a plot of the sum of
the squares of the coefficients at each scale is termed a
scalogram (Flandrin, 1988).

MOLECULAR BIOLOGY DATA AND
WAVELETS
We briefly review the most interesting applications in
the following areas: genome sequence analysis, protein
structure investigation and gene expression data analysis.

Genome sequence analysis
Several authors showed that wavelets can be useful in
detecting patterns in DNA sequences (Arneodoet al.,
1996, 1998; Dodinet al., 2000). In particular, Auditet
al. (2001, 2002) analyzed bending properties of sequences
and provided evidence that the existence of long range
correlations in the small-scale regime (10–200 bp) which
are actually observed in eukaryotic genomes, in contrast
to their absence in eubacterial genomes, depends on
nucleosome patterns. Liò and Vannucci (2000b) showed
that wavelet variance decomposition of bacterial genome
sequences coded as G,C= 1 and A,T = 0 (or −1)
can reveal the location of pathogenicity islands (see also
Vannucci and Lio, 2001).

Protein structure investigation
Wavelets have been applied to all aspects of protein struc-
tural investigations: primary sequence evolution (Moro-
zovet al., 2000; Rzhetsky and Morozov, 2001), secondary
(Li ò and Vannucci, 2000a) and tertiary structure determi-
nation (Murrayet al., 2002; Mandellet al., 1997, 1998;
Hirakawaet al., 1999), refinement of X-ray crystallogra-
phy (Main and Wilson, 2000; Ferreret al., 1998), drug
design and visualization (Carson, 1996). Mandellet al.
(1997, 1998) showed that the phase plots of Morlet WT
of the hydrophobic profiles of amino acid sequences can
be related to the content of secondary structures (alpha
helices and beta sheets) and can be used to classify pro-
teins. They also investigated fluctuations of hydrophobic-
ity along the sequence to derive information on channels,
pore and receptors. Recently Murrayet al. (2002) used
the CWT to analyze the hydrophobicity and relative ac-
cessible surface area of a variety of repeating protein mo-
tifs such as TIM barrels, propellor blades, coiled coils and
leucine repeats.
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Microarray data analysis
Microarray technology allows us to analyze the expres-
sion patterns of hundreds of genes. The use of statistics
is the key to extracting useful information from this tech-
nology. Because of this, CAMDA, critical assessment in
microarray data analysis (http://bioinformatics.duke.edu/
CAMDA) has been established to provide a community-
wide critical assessment of different techniques used in
microarray data analysis. Klevecz (2000) used wavelet de-
composition and denoising techniques to analyze expres-
sion microarray data and found that the expression of most
yeast genes oscillate, including both cell cycle regulated
genes and ones not related to the cell cycle. The author
found two major periodicities, one of∼40 minutes and a
second one of∼80 minutes and hypothesized that part of
the noise in expression microarray data may depend on the
genes being expressed with oscillatory dynamics.

Microarray data analysis can also benefit from data
compression. It is general practice to keep entire mi-
croarray images for reanalysis in case better statistical
methods become available. Wavelet-based techniques are
now the new compression standard: the lifting scheme
is the basis of JPEG2000 (see http://www.jpeg.org for
more details). Previous JPEG algorithms worked in terms
of eight-by-eight squares; what makes wavelets better
than other compression methods is their ability to adapt
to the size and location of regions in the image. Jörnsten
and Yu (2000) proposed a microarray image compression
technique, termed ‘comprestimation’, with a lossless or
lossy coded data structure. The authors discussed the
question of optimal statistical estimation based on lossy
compressed data and determined an upper bound on the
minimum achievable loss of estimation efficiency due
to compression. Myasnikovaet al. (2001) used wavelets
to analyze gene expression measured using tagged an-
tibodies in a set of embryos. These authors obtained a
detailed gene expression map of a morphogenetic field
from fragmentary data. Recently Efronet al. (2001) have
shown that the ‘False Discovery Rate’ (FDR) is a very
useful inferential approach in the analysis of microarray
data. The FDR is a relatively new and important idea in
multiple comparisons: the FDR is the expected proportion
of rejected hypotheses that are falsely rejected (Ben-
jamini and Hochberg, 1995). When the model is sparse,
FDR-like selection yields estimators with strong large
sample adaptivity properties. One natural application
of FDR is threshold selection in wavelet denoising. In
wavelet thresholding, FDR is the proportion of wavelet
coefficients erroneously included in the reconstruction
among those included. This approach might lead to other
applications of wavelets in microarray data analysis.

PERSPECTIVES: VERTICAL INTEGRATION OF
MOLECULAR DATA AND PHYSIOLOGY
With the completion of the human and mouse genome
projects the attention of bioinformaticians will move to
functional genomics and to the integration of molecular
and physiological data.

Modeling biological microstructures
Recently, wavelets have been used to analyze the chro-
matin distribution of the nucleus of breast tissue after Feul-
gen coloring staining (Van De Wouweret al., 2000). The
analysis of the tissue and cell surface texture allows the
characterization of invasive breast cancer and other cel-
lular pathologies and represents a very active area of re-
search: see also Liet al., 2001 and the analysis of structure
and morphogenic regulation organization in filamentous
fungal colonies by Jones (1996).

Wavelets seem more suitable for describing scaling
biological structures and signals than other mathematical
transforms because wavelet basis functions can have
different complex shapes, each suitable for a different
class of problems. There is on going research on defin-
ing wavelets for general geometries (curves, surfaces,
manifolds), over irregular sampling and for particular
problems. For example, curvelets (useful for curved
edges) and ridgelets (useful for straight edges) have
elements distributed across a range of scales and location
along with orientations (Candes and Donoho, 1999).
These elements have increasing numbers of distinct
directions as the scales go finer. The need for these new
mathematical transforms comes in part from study of the
human visual system using natural stimulus statistics.
Edges are the dominant features both in human perception
(providing segmentation into objects) and in mathematical
settings (Donoho and Flesia, 2001). Therefore, wavelet
methods (and extensions beyond wavelets) appear to be a
natural way to achieve vast improvements in the quality
of statistical analysis of biological structures and patterns.

Physiome data?
There are many examples of application of wavelets in
physiology. For example, Diserbo and colleagues used
wavelets to localize stationary segments in long single-
channel current recordings and infer the gating channel
mechanisms (Diserboet al., 2000). Alt et al. (1998)
analyzed the courtship signals in different species of
Drosophila and confirmed original findings by Kyriacou
and Hall (1986) that mutations in theper (period) gene
alter the interpulse intervals in songs. Currently, there is
considerable interest in integrating quantitative biological
information at different size scales, from molecules to
cells, tissues, organs and organisms. A hint at the potential
of wavelets in modeling the scaling behavior of biological
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systems comes from the results of wavelet-based modeling
of physical systems showing scaling behavior in, for
example, turbulence (Katulet al., 2000).

CONCLUSION
The aim of this paper was to increase the familiarity
of wavelet techniques in the bioinformatics community
and to provide useful references to the literature and to
available software. In conclusion, I am delighted to report
that the application of wavelets in molecular biology is
a thriving field of research. It has two important and
linked benefits: an improved ability for capturing hidden
components from biological data and a better link between
biological systems and the mathematics objects used to
describe them.
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