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Abstract

Motivation: Over sufficiently long windows, complementary strands of DNA
tend to have the same base composition. A few reports have indicated that this
first-order parity rule extends at higher orders to oligonucleotide composition,
at least in some organisms or taxa. However, the scientific literature falls short
of providing a comprehensive study of reverse-complement symmetry at multiple
orders and across the kingdom of life. It also lacks a characterization of this
symmetry and a convincing explanation or clarification of its origin.

Results: We develop methods to measure and characterize symmetry at
multiple orders, and analyze a wide set of genomes, encompassing single- and
double-stranded RNA and DNA viruses, bacteria, archae, mitochondria, and
eukaryota. We quantify symmetry at orders 1 to 9 for contiguous sequences
and pools of coding and non-coding upstream regions, compare the observed
symmetry levels to those predicted by simple statistical models, and factor
out the effect of lower-order distributions. We establish the universality and
variability range of first-order strand symmetry, as well as of its higher-order
extensions, and demonstrate the existence of genuine high-order symmetric
constraints. We show that ubiquitous reverse-complement symmetry does not
result from a single cause, such as point mutation or recombination, but rather
emerges from the combined effects of a wide spectrum of mechanisms operating
at multiple orders and length scales.

Contact:baisnee@ics.uci.edu; hampson@ics.uci.edu; pfbaldi@ics.uci.edu

Data: http://promoter.ics.uci.edu/RevCompSym/

mailto:baisnee@ics.uci.edu
mailto:hampson@ics.uci.edu
mailto:pfbaldi@ics.uci.edu
http://promoter.ics.uci.edu/RevCompSym/


Abstract

Introduction

Materials and methods

Results

Discussion

Acknowledgements

References

Appendix

� �

� �

GO BACK

CLOSE FILE

Introduction
Chargaff’s famous first parity rule (Chargaff, 1951) states that, in any piece
of (double-stranded) DNA, the number of As exactly equals the number of
Ts, and the number of Cs exactly equals the number of Gs. The Watson and
Crick base-pairing model fully explains this property of double-stranded DNA
molecules. It is less widely known that the first parity rule approximately
holds true withinsingle DNA strands, over windows of sufficient size, often
in the order of 1000 bp (Bell and Forsdyke, 1999a; Fickett et al., 1992;
Forsdyke, 1995a). This intra-strand parity rule can equivalently be stated from
a double-strand perspective: complementary DNA strands tend to have the
same base composition and are in this respect symmetric. Previous reports
have indicated that the rule extends from the first order (base composition) to
higher orders (oligonucleotide composition), at least in some organisms or taxa
(Forsdyke, 1995a; Hampsonet al., 2000; Prabhu, 1993). At the second order,
for instance, the dinucleotide CT would accordingly tend to be equi-frequent
in reverse-complementary strands, or as frequent as its reverse-complement AG
within a strand.

The intra-strand parity of complementary bases is sometimes called
‘Chargaff’s second parity rule’ (Bell and Forsdyke, 1999a,b; Forsdyke and
Mortimer, 2000). However, a careful reading of Chargaff’s papers reveals that
the only intra-strand parity he reports is that of 6-amino (A+C) and 6-oxo
(G+T) compounds (Chargaff, 1951, 1979; Karkas et al., 1968, 1970; Lin
and Chargaff, 1967; Magasanik and Chargaff, 1989; Rudneret al., 1968a,b,
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1969). Furthermore, a review of the scientific literature shows that DNA
strand symmetry is not the well established and explained fact that such a
prestigious but apparently erroneous paternity may suggest. The literature
specifically addressing reverse-complement symmetry indeed consists of a
few isolated reports, each suffering from at least one, if not all, of the
following shortcomings: (a) limited set of sequences; (b) analysis at low orders
only; (c) purely qualitative results, flawed quantitative analysis, or lack of
characterization; (d) absence of explanation or unconvincing explanation.

In contrast, there is an abundant literature on first-order asymmetries, known
as ‘skews’. Typically amounting to 4% (seeMethods for an explanation
of symmetry and asymmetry measures), skews develop locally in many
prokaryotes, viruses and mitochondria, sometimes extending over very long
stretches. They are independent of AT content, but correlate with the direction of
replication and/or gene orientation, and are likely to result from mutation biases
related to the functions born by each strand—leading or lagging with respect to
replication, template or synonymous with respect to transcription. G is generally
found in excess on synonymous strands and on leading strands; the same is often
true of T, although to a lesser extent (Blattneret al., 1997; Burlandet al., 1993;
Frank and Lobry, 1999; Grigoriev, 1999; Kano-Sueokaet al., 1999; Lobry,
1996a,b; Perna and Kocher, 1995; Sueoka, 1995; Tillier and Collins, 2000; Wu
and Maeda, 1987). Skews are consequently routinely used for the prediction
of replication origins, and skew plots now figure in most genome analyses.
However, while it provides convincing explanations for local asymmetry, the
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literature apparently takes first-order strand symmetry for granted in the first
place. The underlying assumption is that base-composition symmetry results
from single-point mutations that equally affect complementary strands, as
demonstrated in the case of simple models of DNA evolution (Lobry, 1995;
Lobry and Lobry, 1999).

In addition, high-order symmetry is widely considered, implicitly or
explicitly, as the consequence of first-order symmetry. In principle, the latter
might indeed induce the former, given that combinations of nucleotides
randomly drawn from a symmetric pool are likely to result in symmetric
oligonucleotide distributions (e.g. ifP(XY) = P(X)P(Y), andP(A) = P(T),
then P(AA) = P(A)2 = P(T)2 = P(T T)). Two high-order symmetry
mechanisms, however, have been suggested.Fickett et al. (1992) noted that
strand inversion—resulting from recombination events in which fragments of
complementary strands are swapped—could be an explanation. From a more
speculative perspective,Forsdyke(1995a,b) suggested that the selection of
stem-loop structures might be a primary source of symmetry. Since stem-loop
formation relies on base pairing of nucleotides on the same strand in the stem
region, their selection would induceNmer reverse-complement symmetry up
to the length of the stems. To the best of our knowledge, however, no attempt
has been made to determine whether high-order symmetry could result entirely
from first-order parity, to investigate whether explanations relying on a single
factor are adequate, or to characterize the nature or clarify the origin of strand
symmetry in any other way.
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Here, we develop methods to quantify symmetry at all orders and to assess
whether high-order parities result from those existing at lower orders. We first
establish the universality and variability of symmetry at orders 1 to 9 across a
large set of genomes ranging from viruses to organelles, to higher eukaryotes.
We then demonstrate the existence of genuine high-order symmetries that do
not entirely result from lower-order ones, and invalidate explanations relying
on a single mechanism—be it single-point mutation at the first order, or
recombination events resulting in strand inversion. We show that symmetry
instead results from an array of mechanisms operating at multiple orders and
imprinting DNA sequences at different length-scales.
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Materials and methods

Symmetry: distributions and plots

To study reverse-complement symmetry at a given orderN, we count all
overlapping occurrences of each of the 4N possible oligonucleotides of length
N, along a given DNA strand and over a given length, in 5′ to 3′ orientation.
We thus obtain a distribution of the formπ(X1 . . . XN), where X1 . . . XN

representsNmers. Similar results are obtained with non-overlapping counts.
Perfect strand symmetry of orderN occurs when everyNmer is as frequent
as its reverse complement, i.e. whenf (X1 . . . XN) = f (X̄N . . . X̄1). Since the
size of the distribution grows exponentially withN, large data sets are needed
at high orders to ensure that mostNmers are represented and that their relative
abundance is accurately estimated.

To visually assess the reverse-complement symmetry of a sequence, we plot
the frequencies (or counts) observed on one strand against those observed
on the complementary strand—which is obviously virtual in the case of
single-stranded genomes. Such plots are necessarily symmetric with respect
to the diagonal line, reflecting strand reverse-complementarity. Points aligned
on the diagonal, however, reveal perfect strand symmetry, while points that are
distant from the diagonal reveal strand asymmetry.



Abstract

Introduction

Materials and methods

Results

Discussion

Acknowledgements

References

Appendix

� �

� �

GO BACK

CLOSE FILE

Symmetry and similarity measures

We measure theNth-order strand symmetry of any given sequence as the
similarity between itsNmer distribution f and the Nmer distribution f ′

of its actual or virtual reverse-complement. We thus derived indices from
standard distance or divergence measures such as theL p distances or the
Kullback–Liebler relative entropy or divergence (Baldi and Brunak, 2001). In
practice, we use: (a) an index based on theL1 distance, i.e. the sum of the
absolute values of the differences between oligonucleotide frequencies:

S1
= 1−

∑
i | fi − f ′i |∑

i | fi | + | f
′

i |
; (1)

or (b) Pearson’s linear correlation coefficient:

SC
= C( f, f ′). (2)

Both indices can be computed over complete sets ofNmers or on particular
subsets. WhenN is even, for instance, there are 4N/2 Nmers that are identical to
their reverse-complement, which can significantly increase symmetry measures
at low ordersN. Such reverse-complement invariantNmers can either be taken
into account to compute the overall symmetry level of the full distribution, or
discarded in order to capture the specific symmetry level of its non-palindromic
subset. Except when otherwise specified, we here measure symmetry on full
distributions, in which case the denominator of (Equation 1) is equal to 2.
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Note that one can also useS1 and SC to measure the strand symmetry of the
discrepanciesf = o− r or f = o/r between an observedNmer distributiono
and any referenceNth-order distributionr .

S1 ranges from 0 (asymmetry/dissimilarity) to 1 (perfect symmetry/similarity).
When computed on distributions, it represents the percentage ofNmer
occurrences that are symmetrically distributed among complementary strands.
It generalizes classical measures of first-order asymmetries—AT and GC
skews—which are expressed as (A-T)/(A+T) and (G-C)/(G+C). Its complement
to 1 (an asymmetry index) indeed corresponds to the weighted average of the
absolute values of the skews of reverse-complementary bases orNmers. This
is easily seen by comparing (Equation 1) to the weighted sum of the absolute
values of the skews( fi − f ′i )/( fi + f ′i ), with weights( fi + f ′i )/

∑
i ( fi + f ′i ).

In the Appendix, we show that, for any given sequence,S1 monotonically
decreases asN increases.

SC ranges from -1 to 1 and generally yields results that are qualitatively
similar to those obtained withS1. However, there are a number of differences,
and some precautions need to be taken when usingSC. First, it is well known
that correlation is sensitive to outliers. In genomic sequences, over-represented
Nmers, such as runs of As or Ts (poly(A) and poly(T) tracts), can in particular
bias theSC symmetry index. More generally, for a constantS1 level, sequences
displaying a more widespreadNmer distribution tend to result in higherSC

values. Second, a perfectly uniform base or oligonucleotide distribution of
order N—for which fi = 1/4N—satisfiesS1

= 1 and therefore is perfectly
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symmetric according to this index. However,SC is not defined in this case, and
small random perturbations around uniformity can cause low-orderSC values
to fluctuate widely. Third, for sequences that are too short to measureNth-order
statistics,Nmers that are not represented can increaseSC when taken into
account, especially at low orders. Lastly, unlikeS1, SC does not necessarily
monotonically decrease asN increases.

We also useS1 and SC in sliding windows of varying sizes to measure the
evenness of the distribution of genes or other features among complementary
strands, both in terms of their number of occurrences and in terms of their
base-pair coverage.

Statistical models of symmetry

To further assess strand symmetry and gain insight on its origin, it is useful to
build strand-symmetric statistical models of DNA sequences, and compare the
symmetry level they predict to the levels observed in actual DNA sequences. For
this purpose, we model biological sequences using Markov models. A DNA or
RNA Markov model of orderN has 4N parameters associated with the transition
probabilities P(XN |X1 . . . XN−1) = P(X1 . . . XN)/P(X1 . . . XN−1), for all
possibleX1 . . . XN in the alphabet, together with a starting distribution of the
form π(X1 . . . XN−1). Since the number of parameters grows exponentially,
only models up to a certain order can be determined from a finite data set.

We built models of order 1 to 9 that matched a wide spectrum of
highly symmetric biological distributions, and then slightly modified the
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model parameters to force perfect reverse-complement symmetry. Through
computer simulations, we then generated DNA sequences of various lengths
and estimated the expectation (µ) and variance (σ 2) of S1 at orders 1 to 9.
For uniform distributions, we show thatµ ≈ 1 −

√
4N − 1/

√
πL and that

σ 2
≈ (π − 2)(4N

− 1)/(2π4N L), whereL and N respectively represent the
sequence length and the order at which symmetry is measured (seeAppendix).
These estimations are in good agreement with computer simulations.

Qi and Cuticchia(2001) have tested the significance of symmetry using a
paired Student’st-test. However, the corresponding null hypothesis, i.e. the fact
that the mean difference of counts ofNmers and their reverse complement
is zero, is likely to be also verified for asymmetric distributions and this test
is irrelevant. Aχ2 test on the distributions of complementary strands could
be used instead. However, biological symmetry is not perfect, and even for
the most symmetric biological sequences, complementary strand would have
significantly different distributions according to such a test. The analytical
approximations and the simulations we use to estimate the distribution of
symmetry measures are consequently more appropriate approaches.

Restrictions and extensions

A distribution of orderN imposes constraints over lower-orderMmers (M <

N) and thus induces auniquedistribution of orderM called the restriction or
projection of the original distribution. This projection can be calculated using
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P(X1 . . . XM) =
∑

YM+1...YN
P(X1 . . . XMYM+1 . . .YN). On the other hand,

a distribution of orderM can have multiple extensions to a distribution of
order N, N > M . A given distribution of orderM , however, yields a unique
factorial extensionor predicted distribution at any orderN > M . For instance,
a first-order distribution defined by the parameterspX (pA, pC, pG, pT ) has a
second-order factorial extension with parameterspXY = pX pY.

Alternatively, one can estimate the factorial extension or the restriction of a
distribution of orderN at any orderO by generating a sufficiently long random
string with the Markov model of orderN, and by computing its statistics of
orderO.

When a distribution of orderO is symmetric (S1
O = 1), then: (a) its unique

restriction to any lower orderM is also symmetric; (b) its multiple extensions
to any higher orderN need not be symmetric; (c) its unique factorial extension
to any orderN, however, is also symmetric.

Evidencing high-order constraints

To put in evidence high-order constraints, we measure the discrepancies
that arise at any orderN between the factorial extensions of lower-order
distributions of orderM and the actualNth-order distribution.

For this purpose, we use the distance 1− S1. Alternatively, we useSC as a
measure of the fit between predicted and observed distributions. Discrepancies
necessarily result from biological mechanisms that operate above theM th order
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and tend to select or excludeKmers withK > M . Such distance or fit measures,
however, do not reflect the relative importance of the mechanisms that shape
DNA sequences at various orders.

Residual symmetry

To assess the symmetry of high-order constraints, we factor out at any orderN
the effect of any lower-order distribution of orderM , for each oligonucleotide
and on each strand. This is achieved by quantifying the discrepancies between
observedNmer frequencies (oi ) and the corresponding expected frequencies
(ei ) according to the factorial extension of the distribution of orderM . We
thus form ratios (fi = oi /ei ) or differences (fi = oi − ei ), which both yield
qualitatively similar results. If one of the denominators happens to be zero,
small pseudo-counts equivalent to Dirichlet priors (Baldi and Brunak, 2001)
can be used to avoid infinite ratios. We then computeS1 andSC on these ratios
or differences, thus measuringresidual symmetrythat results from genuine
high-order (> M) constraints. It can be shown thatS1 residual symmetry drops
to a value close to 0.3 (instead of 0 forSC) after removal of all symmetry (see
Appendix).

Data

We analyzed 396 sequences representing full or partial chromosomes and
genomes of 6 eukaryota, 11 bacteria, 10 archaea, 100 single- or double-stranded
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RNA or DNA viruses and 192 mitochondria. Most sequences were downloaded
from GenBank (Bensonet al., 2000) or Entrez (Schuleret al., 1996). Our
sample of mitochondria includes every complete genome that was available as
of May 26, 2001.

Strand symmetry is a property of individual DNA molecules and ought to be
measured in contiguous sequences corresponding to a specific strand. Pooling
sequences that belong to complementary strands or to different chromosomes
can artificially increase any degree of symmetry. In this respect, it is worth
noting that some published eukaryotic chromosome sequences are not yet fully
oriented: some of their sub-sequences, surrounded by gaps, may belong to one
strand or the other. We analyzed such sequences, as well as their largest fully
oriented sub-sequences. We also compared fully oriented releases with earlier,
partially oriented ones. Although we concluded that mis-oriented sub-sequences
only moderately affect the overall symmetry level, we discarded incompletely
oriented published chromosome sequences from our data set. Instead, we
used large, fully-oriented sub-sequences, or the yet-unpublished most recent
oriented sequences available from the sequencing and assembly centers. See
http://promoter.ics.uci.edu/RevCompSym/ for details and a complete list of
sequences.

While strand symmetry must be measured over a specific strand, its origin
can be investigated by pooling non-contiguous regions that share a given
characteristic, such as their leading or lagging status during replication, their
coding or non-coding nature, their position upstream of genes, etc. The specific
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symmetry levels of such pools may provide insight on the mechanisms that
promote or disrupt symmetry. When two pools gathered on complementary
strand have similar compositions, it is reasonable to merge them to study some
aspects of symmetry with a higher statistical accuracy. The same applies to
pools extracted from different chromosomes.

Here, within eukaryotic genomes, we pooled and analyzed separately all
identified coding regions and their 500 bp long upstream non-coding regions,
discarding non-coding regions that overlapped on opposite strands, and coding
sequences that overlapped with the 500 bp long upstream region of a coding
sequence on the opposite strand.

Lastly, to further investigate how sequence length affects symmetry levels, we
used two complementary methods: (a) iterative halving of the data; (b) sliding
windows.
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Table 1. Single-stranded base composition (%) of yeast nuclear and mitochondrial
chromosomes. The corresponding AT and GC skews, and the overallS1 and SC

symmetry levels are indicated

size A T AT skew G C GC skew S1 SC

(%) (%) (%) (%) (%) (%) (%)
Chr. 1 230 203 30.33 30.39 −0.10 19.88 19.39 1.24 99.45 0.9979
Chr. 2 813 140 30.70 30.95 −0.41 18.99 19.36 −0.97 99.37 0.9985
Chr. 3 315 339 31.14 30.30 1.37 18.85 19.70 −2.21 98.31 0.9891
Chr. 4 1 531 929 31.12 30.97 0.24 19.02 18.89 0.35 99.72 0.9997
Chr. 5 576 870 30.60 30.89 −0.47 19.47 19.04 1.12 99.28 0.9980
Chr. 6 270 148 30.70 30.57 0.21 19.41 19.32 0.22 99.79 0.9998
Chr. 7 1 090 936 31.01 30.93 0.14 19.02 19.04 −0.08 99.89 0.9999
Chr. 8 562 638 30.93 30.58 0.57 19.10 19.39 −0.74 99.36 0.9984
Chr. 9 439 885 30.54 30.56 −0.03 19.47 19.43 0.12 99.94 1.0000
Chr. 10 745 440 31.00 30.63 0.60 19.29 19.08 0.56 99.42 0.9986
Chr. 11 666 445 30.92 31.01 −0.15 18.91 19.16 −0.67 99.65 0.9995
Chr. 12 1 078 172 30.66 30.86 −0.33 19.21 19.27 −0.17 99.73 0.9997
Chr. 13 924 430 30.97 30.83 0.23 19.09 19.12 −0.09 99.82 0.9998
Chr. 14 784 328 30.80 30.56 0.38 19.30 19.34 −0.09 99.73 0.9996
Chr. 15 1 091 283 31.10 30.74 0.58 19.01 19.15 −0.39 99.49 0.9989
Chr. 16 948 061 31.01 30.93 0.12 19.04 19.02 0.04 99.91 1.0000
Chr. mt 85 779 42.17 40.73 1.74 9.11 8.00 6.47 97.45 0.9970

Results

Example of yeast chromosomes

To illustrate DNA strand symmetry, Tables1 and2 show the single-stranded
nucleotide and dinucleotide composition of the 16 nuclear chromosomes and
the mitochondrial chromosome ofS. cerevisiae. Remarkably, the number of As
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Table 2. Single-stranded dinucleotide composition (%) andS1 and SC symmetry
levels of yeast nuclear and mitochondrial chromosomes. Reverse-complement invariant
dinucleotides AT, TA, CG and GC are excluded from the table andS1 and SC

calculation

AA TT AC GT AG CT CA TG CC GG GA TC S1 SC

Chr. 1 10.4 10.5 5.4 5.6 5.9 5.7 6.6 6.8 4.0 4.1 6.3 6.1 98.75 0.9964
Chr. 2 10.7 10.9 5.3 5.2 5.8 5.9 6.6 6.4 4.0 3.9 6.1 6.3 98.93 0.9981
Chr. 3 10.9 10.3 5.6 5.2 5.7 5.8 6.8 6.3 4.1 3.8 6.1 6.3 97.33 0.9914
Chr. 4 10.9 10.9 5.2 5.2 5.9 5.8 6.5 6.5 3.8 3.8 6.3 6.2 99.61 0.9997
Chr. 5 10.6 10.8 5.2 5.4 5.8 5.8 6.4 6.6 3.9 4.0 6.2 6.1 98.86 0.9982
Chr. 6 10.7 10.6 5.3 5.3 5.8 5.9 6.4 6.6 4.0 4.0 6.3 6.2 99.37 0.9993
Chr. 7 10.9 10.9 5.3 5.2 5.8 5.8 6.5 6.4 3.9 3.8 6.2 6.2 99.63 0.9999
Chr. 8 10.9 10.6 5.4 5.3 5.8 5.8 6.6 6.5 4.0 3.9 6.2 6.2 99.04 0.9990
Chr. 9 10.6 10.6 5.3 5.4 5.9 5.9 6.5 6.5 4.0 4.0 6.2 6.2 99.80 0.9999
Chr. 10 10.9 10.6 5.3 5.3 5.9 5.8 6.5 6.5 3.8 3.9 6.3 6.2 99.17 0.9997
Chr. 11 10.9 10.9 5.2 5.2 5.8 5.9 6.5 6.4 3.9 3.8 6.2 6.3 99.45 0.9992
Chr. 12 10.7 10.8 5.2 5.3 5.9 5.9 6.5 6.5 4.0 3.9 6.3 6.3 99.55 0.9999
Chr. 13 10.9 10.8 5.3 5.3 5.8 5.8 6.5 6.4 3.9 3.9 6.2 6.2 99.68 1.0000
Chr. 14 10.7 10.6 5.4 5.3 5.9 5.8 6.5 6.5 4.0 3.9 6.3 6.2 99.52 0.9999
Chr. 15 11.0 10.8 5.3 5.2 5.8 5.8 6.5 6.4 3.9 3.9 6.2 6.2 99.26 0.9998
Chr. 16 10.9 10.9 5.2 5.2 5.9 5.9 6.4 6.4 3.9 3.8 6.3 6.2 99.79 1.0000
Chr. mt 16.0 14.7 2.1 2.6 3.0 2.5 2.1 2.3 2.3 2.6 3.0 2.6 94.28 0.9975

and Ts, or the number of Cs and Gs, is approximately the same when counted
along any single strand. This translates in relatively low AT and GC skews and
high overallS1 andSC symmetry levels. In addition, this reverse-complement
parity holds also for dinucleotides (e.g.f (AC) ≈ f (GT)). While nuclear
chromosomes are homogeneous, the mitochondrial chromosome displays a
different composition and a lower symmetry. The slight discrepancies in
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chromosome ranking according toS1 andSC illustrate the sensitivity ofSC to
the spread ofNmer distributions (Methods). In particular, the highSC values
observed for the mitochondrial chromosome result from a highly symmetric
outlier (poly-A and poly-T tracts).

Base composition symmetry

Our analysis of genomic sequences reveals that first-order symmetry steadily
increases with DNA length, both across organisms (Fig. 1) and within genomes
(not shown). The increase is linear in a (log(length), log(1-S1)) space. Beyond
105 bp, S1 symmetry generally exceeds 99%. This is the case for every
eukaryotic, archaeal, and bacterial complete chromosome we examined, with
the exception ofM. pneumoniae, yeast chromosome 3, and two chromosome
fragments ofD. melanogaster(respectively 1.16%, 1.69%, 1.21% and 1.50%
asymmetry levels, corresponding to the lowest bacteria and eukaryota points in
Fig. 1). Some double-stranded DNA viruses also display high symmetry levels
(> 99%). Large mitochondrial chromosomes can be highly symmetric, whereas
smaller ones range from moderate to very high asymmetry levels (1% to 48%).
Smaller genomes of single-stranded DNA viruses, RNA viruses, retroids and
extra-chromosomal elements all display moderate to high levels of asymmetry
(1% to 26%).

For comparison purposes, we also plot inFig. 1the average base-composition
symmetry level that would be expected when generating DNA sequences by
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randomly drawing nucleotides from a uniformly distributed (A,C,G,T) pool,
along with the level found 3 standard deviations below the expectation (upper
solid and dotted lines inFig. 1). This uniform model yields approximately the
same results as any other symmetric first-order one, and thus provides us with
an estimation of the maximum average symmetry and the minimum variability
that can be expected for biological sequences. While at all lengths the most
symmetric sequences approach or exceed such maxima, most points are widely
spread along the (logarithmic)y-axis and are found more than 3 standard
deviations below. The average level that a perfectly symmetric first-order model
yields at any given lengthL is reached by biological sequences one to two orders
of magnitude longer.

Higher-order symmetric Markov models (not shown for the sake of
readability) yield lower expectations and higher standard deviations, resulting in
lines that are parallel to those plotted for a first-order model. The corresponding
symmetry levels are still higher and less variable than those observed in
biological sequences.

However, symmetry values are confined to a diagonal band, and exceed,
for instance, the average symmetry level that a perfectly symmetric first-order
model would yield for heptanucleotides (lower line inFig. 1). Furthermore,
a visual inspection reveals that, in logarithmic coordinates, the distance and
spread of biological levels with respect to our reference first-order model
are roughly similar at all sequence lengths and across all taxa, with the
notable exception of mitochondria. InTable 3, categories and taxa are ranked
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from most to least symmetric, according to their average normalized distance
from the first-order model, i.e. after factoring out sequence length effects.
While a detailed statistical analysis would require a separate study,t-tests
comparing such distances among groups bring a crude confirmation to the visual
observation. Mitochondria are significantly less symmetric than any of the
other categories. In addition, single-stranded RNA viruses and retroids, while
undistinguishable among themselves, appear to be significantly more symmetric
than mitochondria, and less symmetric than the most symmetric groups.

The fact that symmetry levels can be bounded using symmetric models,
that symmetry increases in a consistent manner with sequence length both
across and within genomes, and that symmetry levels are roughly similarly
distributed at all lengths, shows that strand symmetry can be considered as
a general emerging property of large poly-nucleotide molecules submitted to
evolutionary pressures. The fact that symmetry levels are lower and more
variable than predicted by simple models confirms that more or less pronounced
asymmetries can develop locally, and shows that: (a) first-order mechanisms, if
they contribute to symmetry, do so in a variable and relatively weak manner; (b)
symmetry might at least partly result from high-order mechanisms.

High-order symmetry

Remarkably, strand symmetry extends to high orders. As illustrated inFig. 2,
counts of oligonucleotides of length 2 to 9 are very similar in complementary
strands and yield high symmetry values for long sequences.
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Table 3. Ranking of groups or taxa after factoring out sequence length effects.
Categories are reported by decreasing average symmetry order, according to the
average of their normalized distances from a perfectly symmetric first-order model.
Z-scores were computed on the logarithm of the asymmetry levels; their average,
minimum, maximum and standard deviation are reported in successive columns for
each category. Categories are labeled as inFig. 1

Category Size Mean Min Max Standard
deviation

dD 10 2.7 −2.5 6.1 2.3
E 50 3.1 −1.9 6.3 1.7
X 27 3.4 −2.0 7.2 2.2
sD 30 3.4 0.3 6.1 1.5
B 12 3.6 1.1 5.9 1.4
dR 3 3.9 2.3 5.6 1.6
A 10 4.2 1.3 5.9 1.3

sR+ 33 4.3 0.8 7.2 1.7
sR− 14 4.7 1.1 6.6 1.4

R 15 4.9 2.4 7.6 1.6
M 192 6.7 0.4 9.5 1.6

Beyond the fact thatS1 monotonically decreases with the order at which
symmetry is measured (Appendix), long sequences are necessary to accurately
measure high-order statistics and the corresponding symmetry.S1 andSC levels
can thus drop sharply at high orders in short sequences. Two complementary
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empirical methods can however be used to assess whether low measures reflect
inaccurate statistics or an actual asymmetry of the strand under study: (a) if
symmetry levels are stable when halving the sample size or (b) if symmetry
levels at neighboring orders are similar, then they are close to their asymptotic
level and are accurate.

While Fig. 2 is derived from the longest sequence in our set, and one of the
most symmetric, an extensive analysis reveals that, statistical accuracy problems
put apart, high-order results strictly parallel first-order ones, and translate into
plots similar toFig. 1. At all orders 2 to 9, there is a general trend for symmetry
to increase with sequence size. Perfect symmetry is closely approached at orders
2 to 5 in the case of the largest DNA sequences, such as human chromosome 22
(S1
≥ 99.6%).

Evidence for high-order mechanisms

Two opposite simple explanations are possible in the face of these results, both
stemming from the view (Forsdyke, 1995a) that high-order symmetries are
the sole consequence of first-order symmetry, or vice-versa. At one extreme,
first-order mechanisms are considered as the sole cause for symmetry. To
test this explanation, we systematically quantify the discrepancies that arise
in complementary strands between the observedNmer distributions and the
factorial Nth-order distributions thatMmer frequencies (M < N) would
yield in the absence of higher-order constraints (Methods). As exemplified
in Fig. 3, discrepancies are significant andstrand-symmetric. The distance
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between observed and predicted distributions increases as the ordersN andM
fall farther apart (Fig. 4a). The residual symmetry levels that are measured after
factoring out the effect of lower-order distributions are high, even whenN and
M are close and the discrepancy between predicted and observed distributions
are therefore low. At any orderN, the residual symmetries are generally lower
than theNth-order symmetry itself. However, they consistently increase with
sequence size, and again approach perfect symmetry up to the fifth order for the
largest DNA sequences (Fig. 4b). Constraints operating above the predicting
order M therefore tend to equally affect complementary strands. High-order
phenomena, up to at least order 9, thus unambiguously contribute to strand
symmetry.

Evidence for low-order mechanisms

At the opposite extreme, symmetries of all orders can be viewed as
predominantly resulting from an even repartition of large-scale homogeneous
features, such as coding and non-coding regions, or leading and lagging
replication strands. Even if they were highly asymmetric, such features would
promote symmetry at all orders when evenly distributed among complementary
strands. While we cannot factor out high-order constraints to directly observe
the imprint of low-order ones, we can, nonetheless, rule out this hypothesis
based on a number of observations.

First, large-scale phenomena only induce symmetry over large sequences,
and cannot account for the substantial symmetry that fragments a few hundred
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bp long often displayFickettet al.(1992); Forsdyke(1995a); Bell and Forsdyke
(1999a)

Second, single-point mutations directly promote symmetry at the first order
when they are blind with respect to strandedness (Lobry, 1995; Lobry and
Lobry, 1999), or an often-moderate asymmetry when they are not (Blattner
et al., 1997; Burland et al., 1993; Frank and Lobry, 1999; Grigoriev, 1999;
Kano-Sueokaet al., 1999; Lobry, 1996a,b; Perna and Kocher, 1995; Sueoka,
1995; Tillier and Collins, 2000; Wu and Maeda, 1987).

Beyond the first order, strand-symmetric selection and exclusion of
oligonucleotides are plausible partial explanations for residual symmetries.
Species-specific patterns of dinucleotide and trinucleotide over- and under-
representation, which are consistently imprinted in sequences on the order of
50 kbp and thus constitute ‘genome signatures’, have been partly attributed
to pressures directly exerted on the oligonucleotides themselves (Burgeet al.,
1992; Campbellet al., 1999; Karlin and Burge, 1995; Karlin and Mrazek,
1997; Mrazek and Karlin, 1998). It has furthermore been noted that, even
in the presence of first-order skews, second-order deviations from first-order
predictions are often identical in complementary strands (Mrazek and Karlin,
1998). This is an indication that dinucleotide and trinucleotide selection and
exclusion affect complementary strands independently of the context and
symmetrically.

Likewise, at still higher orders, regulatory motifs on the order of 5 to 10



Abstract

Introduction

Materials and methods

Results

Discussion

Acknowledgements

References

Appendix

� �

� �

GO BACK

CLOSE FILE

Table 4. Symmetry levels for a pool of coding regions ofS. cerevisiae. The pool
size is approximately 9 Mbp. Columns correspond to the orderN at which symmetry
is measured. The first row (labeled 0) shows theS1 symmetry levels ofNmer
distributions (N = 1 to 9). Successive rows show residual symmetry levels (S1

computed on differences between predicted and observed distributions) after factoring
out distributions of orderM = 1 to 8

1 2 3 4 5 6 7 8 9
0 0.94 0.93 0.90 0.88 0.86 0.84 0.81 0.79 0.74
1 0.85 0.64 0.65 0.62 0.60 0.57 0.55 0.51
2 0.32 0.45 0.45 0.44 0.43 0.41 0.39
3 0.63 0.56 0.52 0.48 0.44 0.40
4 0.42 0.38 0.38 0.36 0.33
5 0.31 0.35 0.34 0.32
6 0.39 0.35 0.32
7 0.31 0.29
8 0.28

bp are likely to be selected against except in proximity to genes they regulate.
The investigation of the genomes ofS. cerevisiaeandD. melanogasterreveals
that someNmers are symmetrically over-represented at specific locations
in upstream regions, and otherwise symmetrically under-represented (to be
reported elsewhere). Computer simulations (not shown) confirm that the
symmetric exclusion or selection of a subset of oligonucleotides promotes
symmetry at all orders.
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Table 5. Symmetry levels for a pool of non-coding regions upstream of genes inS.
cerevisiae. The pool size is approximately 2.5 Mbp. See legend ofTable 4

1 2 3 4 5 6 7 8 9
0 0.99 0.99 0.98 0.98 0.97 0.96 0.94 0.91 0.84
1 0.91 0.90 0.90 0.88 0.86 0.82 0.75 0.65
2 0.88 0.89 0.87 0.84 0.79 0.72 0.62
3 0.93 0.88 0.83 0.76 0.66 0.57
4 0.79 0.74 0.67 0.59 0.52
5 0.67 0.61 0.55 0.49
6 0.57 0.51 0.47
7 0.47 0.45
8 0.43

Finally, our separate analysis of pooled sequences shows that eukaryotic
coding regions display an asymptoticS1 symmetry level of approximately 95%
at the first order, while non-coding regions can approach perfect symmetry as
the size of the pool increases. The asymptotic limit of coding regions, which
is presumably linked to protein-coding constraints and transcription-related
mutation biases, is for instance 94.0% inS. cerevisiaeand 95.7% inC. elegans.
While evidencing an intrinsic moderate first-order asymmetry of coding
regions, these results also show that large-scale features can be substantially
or almost perfectly symmetric. Therefore, an even strand repartition of coding
and non-coding regions is not necessary to achieve substantial symmetry at the
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first order. Furthermore, as exemplified in Tables4 and5, plain and residual
high-order symmetry drops sharply in coding regions asN increases, which
contrasts with the asymptotic convergence towards perfect symmetry at all
orders in large complete chromosomes and in the upstream regions of yeast.
As an exception to this general rule, distinct convexities are often observed
in residual symmetry profiles when order 3 and, to a lesser extent, order 6
are factored out. Presumably, asymmetric constraints linked to protein coding
are then removed. The substantial first-order symmetry of coding regions is
therefore achieved despite relatively asymmetric high-order constraints, and is
thus likely to result from low-order mechanisms.

In short, three lines of evidence clearly indicate that low-order mechanisms
contribute to strand symmetry: (a) the length scale at which substantial
symmetry is often reached; (b) the evidence for symmetric constraints of orders
1 to 10; (c) the symmetry levels of coding and upstream regions.
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Fig. 1. Symmetry levels (S1) measured on the base composition of 396 chromosomes or nucleic
acid sequences of increasing length. Markers differentiate the following taxa or categories: viruses,
single-stranded DNA (sD), double-stranded RNA (dR), retroids (R), single-stranded RNA- (sR-),
single-stranded RNA+ (sR+), double-stranded DNA (dD); bacteria (B); archaea (A); eukaryota (E);
extra-chromosomal elements (X); mitochondria (M). The upper line representsS1 expectation for DNA
sequences generated with a first-order, uniform (A,C,G,T) Markov model. The dotted line is 3 standard
deviations away from the expectation. The corresponding upper bound exceeds the limits of they-axis. The
lowest line represents the average symmetry level that the model would yield for heptanucleotides. The
lines were drawn after analytical approximations (Methods). They are in good agreement with simulation
results. Any non-uniform first-order model yields lines that are parallel and close to the plotted ones.
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Fig. 2. Counts on direct strand versus counts on reverse-complementary strand of
human chromosome 22, for oligonucleotides of lengthN=1 to 9.S1 symmetry levels
are reported on each plot.SC symmetry levels amount to 1.00 at all orders.
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Fig. 3. Residual symmetry at orderN = 7 in human chromosome 22. Deviations
of observed heptanucleotide counts from those predicted by lower-order distributions
are measured as ratios. Deviations observed on the direct strand are plotted against
those observed on the reverse-complementary strand. Successive plots correspond to
increasing predicting ordersM . In the absence of high-order constraints, all points
should lie around position(1,1), where two perpendicular lines intersect. The tight
alignment of point along the diagonal translates in highS1 andSC levels, and shows
that high-order phenomena contribute to the heptanucleotide symmetry thatFig. 2
(N = 7) illustrates.
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Fig. 4. Distance and residual symmetry profiles at orders 2 to 9 in human chromosome
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Discussion
Through the methods we have developed, we have established that strand
symmetry is a general emerging property of large poly-nucleotide molecules,
that genuine high-order constraints promote symmetry at multiple orders,
and that commonly accepted simple explanations of reverse-complement
parities are inadequate. Pervasive strand symmetries must be considered as the
compound effect of a wide spectrum of mechanisms that operate at multiple
orders, leave their symmetric imprint at multiple length scales, and tend to
shape complementary strands as well as functionally similar but non-contiguous
regions.

Any selective pressure favoring intra-strand self-complementarity in relation
to DNA, rRNA, tRNA or mRNA secondary structure, increases symmetry.
Beyond such direct effects, it is important to realize that, provided it is blind
to strandedness, any mechanism that alters double-stranded DNA or RNA
sequences tends to promote reverse-complement symmetry. Consequently,
symmetry does not necessarily represent a direct constraint or add a selective
advantageper se. At the first-order, single-point insertions, deletions or
substitutions thus generally result in approximately symmetric sequences. The
symmetric selection and exclusion ofNmers 2 to 10 nucleotide long, notably in
relation to their structural or binding properties, are also likely to significantly
contribute to symmetry. At even higher orders, the even distribution of
large-scale features among strands, which recombination events can promote
through strand inversions, tends to cancel at a large scale the typically moderate
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asymmetries that can develop locally, notably in relation to the functions born
by each strand, and to the corresponding mutation, repair, or signal sequence
distribution biases.

Some of our results support the view that such very high-order mechanisms
play a significant role. For instance, the equi-partition of genes between strands
can cancel out in eukaryotes the intrinsic 5% asymmetry of coding regions
at the first order. Counts of genes and the measurement of their base-pair
coverage show that an even repartition is indeed often achieved in eukaryotes.
Furthermore, base composition symmetry can display correlations with gene
symmetry that are substantial and stronger than with sequence length. In the
case of the 16 nuclear chromosomes of yeast, for instance, the correlation
amounts to 0.76, and to 0.86 when including the mitochondrial chromosome.
Chromosome 3, which contains mating loci, is the least symmetric (1.69%
asymmetry at the first order) and also displays a particularly high gene
asymmetry (15%). Likewise, an even repartition of large-scale features
contributes to the high global symmetry levels observed in some mitochondria,
viruses and prokaryotes, where first-order skews develop over long stretches.
Although in a few cases skews might in principle be compensated by a mutual
cancellation of transcription- and replication-related biases (Frank and Lobry,
1999), an even strand repartition of genes and leading/lagging replication
regions is in general necessary to remove asymmetries. Within our data set,
significant skews are found, for instance, inE. coli (Blattner et al., 1997;
Lobry, 1996a), B. subtilis(Lobry, 1996a) and adenoviruses (Grigoriev, 1999),
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for which global first-orderS1 symmetry nonetheless reaches 99.9%, 99.8%
and 98%, respectively. In non-eukaryotic genomes, we again find substantial
correlations between base-composition symmetry levels and the evenness of
gene repartition among strands. For instance, the correlation coefficient is 0.5
in mitochondrial genomes, in which local asymmetries correlate both to gene
orientation and to replication direction.

Duplication events followed by strand inversion promote symmetry at
a large scale, and at all orders up to the size of the duplicated feature.
Gene duplication, the multiplication of repetitive elements (among which
palindromic, inherently symmetric sequences are over-represented (Cox and
Mirkin , 1997)) and chromosomal inversions are thus likely contributors. The
insertion of transposons and retroviruses is also a significant potential source
of symmetry in higher eukaryotes, where they are relatively evenly distributed
among strands and can represent more than 50% of the genome.

Some viruses (DNA and double-stranded RNA viruses) display high levels of
symmetry with respect to their length, and single-stranded viruses and retroids
are not strikingly less symmetric than double-stranded higher organisms once
length effects are factored out (Table 3). While their integration to the host
genome or their reliance on its replication machinery might explain their relative
symmetry, viruses represent good candidates to assess the effect of putative
selective pressures for self-complementarity within a strand.

Interestingly, we found that over- or under-representation profiles and
residual symmetry profiles such as those exemplified inFig. 4 are very similar
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for all chromosomes of a given organism. In addition, the similarity of over-
or under-representation profiles and that ofNmer distributions are generally
higher between complementary strands than between strands belonging to
different chromosomes. This suggest that: (a) genome signatures—specific
dinucleotide and trinucleotide over- and under-representation patterns that
reflect phylogeny, and are measured in pooled complementary sequences—
extend to high orders; (b) over sufficiently long windows, genome signatures
are a property of single strands rather than pooled complementary strands; (c)
the same spectrum of mechanisms that yield homogeneousNmer distributions
across chromosomes also shape single strands and promote symmetry.

The methods we have developed do not quantify the relative contribution
of different mechanisms and orders to reverse-complement symmetry. Such an
assessment is a matter for future investigation.
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Appendix

Symmetry of restrictions

Consider a symmetric Markov model of orderN which induces a symmetric
distribution onNmers so that for anyNmer P(X1 . . . XN) = P(X̄N . . . X̄1).
Consider now the lower-order restriction of this distribution toMmers, with
M < N. The probability distribution induced on the space ofMmers is
also symmetric. To see this, the probability of anyMmer according to the
higher-order distribution is given by:

P(X1 . . . XM) =
∑

Y1...YN−M

P(X1 . . . XMY1 . . .YN−M). (3)

For the reverse complement, we have:

P(X̄M . . . X̄1)=
∑

Z1...ZN−M

P(Z1 . . . ZN−M X̄M . . . X̄1)

=

∑
Y1...YN−M

P(ȲN−M . . . Ȳ1X̄M . . . X̄1)

= P(X1 . . . XM), (4)

the last equality resulting from the symmetry of the distribution of orderN.
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Expectation and variance of S1

If X is a N (0, σ 2) normally distributed random variable, with mean 0 and
varianceσ 2, then it is easy to check that the expectation and the variance of
the random variable|X| are:

E(|X|) =

√
2

π
σ and Var(|X|) =

(π − 2

π

)
σ 2. (5)

Consider nowNmer frequency valuesfi and f ′i . Assume, for approximation
purposes, that the difference of frequenciesfi − f ′i is normally distributed
with mean 0 and varianceσ 2

d . Then, by linearity of the expectation and using
(Equation 5), the expected value of the symmetry indexS1

= 1−
∑

i | fi− f ′i |/2
can be approximated by:

E(S1) ≈ 1−
4N

√
2π
σd. (6)

For simplicity, we can look at the case of a sequence with total lengthL and a
uniform Nmer distribution wherefi is approximately normal with mean 1/4N

and varianceσ 2
= (1− 1/4N)/(L4N). It is reasonable then to approximate the

distribution of fi − f ′i byN (0, σ 2
d = 2σ 2). Substituting in (Equation 6) gives

in this case:

E(S1) ≈ 1−

√
4N − 1
√
πL

. (7)
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Notice thatE(S1) decreases withN. Clearly asL →∞, E(S1)→ 1. For large
ordersN, we also haveE(S1) ≈ 1− 2N/

√
πL.

For the variance, if we ignore the small covariance, we get: Var(S1) ≈

4NVar(| fi − f ′i |)/4. Using (Equation 5), we get:

Var(S1) ≈
1

2

π − 2

π

4N
− 1

4N L
≈

1

2

π − 2

πL
. (8)

The variance goes to 0 with the length like 1/L.

S1 decreases monotonically with N

ConsiderS1
N andS1

N+1, the symmetry measures of a sequence at orderN and
N + 1. For anyNmer X1 . . . XN and ignoring boundary effects, overlapping
counts give immediately:P(X1 . . . XN) =

∑
Y P(X1 . . . XNY). Using this

and the triangle inequality in the formula forS1 shows that the numerator in
Equation 1in general increases substantially (in some trivial cases it may remain
constant) when going from orderN to orderN + 1. The denominator, on the
other hand, remains constant and equals 2 when computed on distributions.
Thus the value ofS1 decreases with the orderN. It is easily verified that when a
distribution of orderM is perfectly symmetric (S1

= 1) or perfectly asymmetric
(S1
= 0), then its factorial extension to any higher orderN yields the sameS1

value.
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Residual S1 value after removal of all symmetry

A standard calculation shows that:∫
+∞

−∞

|x|
1

√
2πσ

e−
1
2
(x−µ)2

σ2 dx =

µ

σ

[
−1+ 2F

(µ
σ

)]
+

2σ
√

2π
e−µ

2/2σ2
, (9)

where F is the cumulative distribution of the normalized Gaussian. Now
suppose that we are approximating the distributionf of order N by the
distribution g, and f ′ by g′. In a typical case,g and g′ are the factorial
distributions resulting from lower-order Markov models of complementary
strands. When we are trying to factor out the effect ofg on f , we look at how
close f −g is typically to 0 or how closef/g is to 1. To a first approximation we
can model these deviationsf − g or f/g using a GaussianN (µ, σ 2). Wheng
is a very good approximation tof , in particular wheng is the Markov model of
orderN, thenµ = 0 (resp.µ = 1) for the difference (resp. for the ratio). When
g comes from a strictly-lower order, then the residual mean may not necessarily
be 0. In all cases,( f − g)− ( f ′ − g′) can then be approximated by a Gaussian
N (0,2σ 2). Using Equations (5) and (9), we have the rough approximations:

S1
≈ 1−

√
2
π

√
2σ

2
[
µ
σ

[
−1+ 2F(µ

σ
)
]
+

2σ
√

2π
e−µ2/2σ 2] . (10)
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Whenµ = 0, this givesS1
≈ (
√

2 − 1)/
√

2 ≈ .293. Thus the residualS1

symmetry one measures at orderN on a DNA sequence generated using a
symmetric Markov model of orderM < N, after factoring out the distribution
of order M , is approximately .293 at any reasonable lengthL. Essentially the
same value is obtained from (Equation 10) when the ratio is used instead,
with µ = 1 provided σ is reasonably small so thatF(µ/σ) ≈ 1 and
exp(−µ2/2σ 2) ≈ 0. The residualS1 value captures a random background
level of overlap in the deviations from the factorial extensions, measured on
complementary strands.


