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Abstract

In this paper we propose a new method for recognition of prokaryotic
promoter regions with startpoints of transcription. The method is based on
Sequence Alignment Kernel, a function reflecting the quantitative measure
of match between two sequences. This kernel function is further used in
Dual SVM, which performs the recognition.

Several recognition methods have been trained and tested on positive
data set, consisting of 669σ 70-promoter regions with known transcription
startpoints of Escherichia coli and two negative data sets of 709 examples
each, taken from coding and non-coding regions of the same genome. The
results show that our method performs well and achieves 16.5% average
error rate on positive & coding negative data and 18.6% average error
rate on positive & non-coding negative data.

Availability: The demo version of our method is accessible from our
websitehttp://mendel.cs.rhul.ac.uk/

Contact: leo@cs.rhul.ac.uk

http://mendel.cs.rhul.ac.uk/
mailto: leo@cs.rhul.ac.uk
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Introduction
Promoter regionis an area on the chromosome which determines where
the transcription of a particular gene(s) should be initiated and on what
conditions. In prokaryotic organisms thepromoter regionoccupies several
hundred base pairs upstream ofTranscription Start Site(TSS) and a smaller
area downstream of TSS, and may serve for transcription of a single gene
as well as for a group of genes (an operon).

During the last five years many prokaryotic genomes have been
sequenced, including that ofEscherichia coli(Blattneret al., 1997). The
gene content of these genomes was mostly computationally recognized
(which is usually in good agreement with later lab experiments). However,
the promoter regions and TSS are still undetermined in most cases and
the software able to accurately predict promoters in sequenced genomes
is not yet available in public domain.Promoter recognition, the compu-
tational task of finding the promoter regions on a DNA sequence, is very
important for defining the transcription units responsible for specific path-
ways (because gene prediction alone cannot provide the solution) and for
analysis of gene/operon regulation.

Experimental studies of prokaryotic promoter regions show that they
contain a certain set ofbinding motifs—relatively short chunks of DNA
to which the RNA polymerase and special regulatory proteins can bind in
order to initiate and control the transcription (De Hasethet al., 1998). The
majority of prokaryotic promoter recognition approaches use thebinding
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Fig. 1. Prokaryoticσ 70 promoter region with TSS, ‘−10’ and ‘−35’ binding motifs and two spacers.

motifbased model ofpromoter region, which emphasizes the importance
of binding motifsand essentially neglects the data between them (spacers).
Figure 1shows such a model for prokaryoticσ 70 promoter region with
two binding motifsand twospacers.

Because certain variation in the lengths of thespacersand informa-
tional content of eachbinding motifis allowed,4 the search for the ‘right’
placement ofbinding motifsis not completely trivial.

Different general approximate matching techniques, as well as the
ones, specifically designed for this task, are used forbinding motif
search (Crochemore and Sagot, 2002, and references therein). Various
approaches based on weight matrices (Staden,1984; Harley and Reynolds,
1987; Mulligan and McClure, 1986), neural networks (Lukashinet al.,
1989; Demeler and Zhou, 1991; O’Neill , 1991, 1992; Horton and Kane-
hisa, 1992; Mahadevan and Ghosh, 1994; Pedersen and Engelbrecht,
1995), generalized portrait (Alexandrov and Mironov, 1990), hidden
markov models (Pedersenet al., 1996), genetic algorithms (Bailey and

4For example, so-called -10-box ofσ 70 bacterial promoter may look like TATAAT, CATAAT, TATAAA, etc.
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Hart,http://citeseer.nj.nec.com/172804.html), syntactic recognition algo-
rithms (Rosenbluethet al., 1996; Leunget al., 2001) and automatic motif
discovery techniques (Hertz and Stormo, 1996; Bailey and Elkan, 1994,
1995; Tompa, 1999; Liu et al., http://bioprospector.stanford.edu/; Kent,
http://www.cse.ucsc.edu/˜kent/improbizer/improbizer.html) have been
proposed to serve this purpose. There are also separate approaches that use
the motifs found as their input to some ‘second level’ recognizers, such as
hidden Markov models, neural networks or support vector machines, for
further prediction (Eddy, 1998, http://hmmer.wustl.edu/; Grundyet al.,
1997; Pavlidiset al., 2001).

When such approaches are specifically applied to prokaryotic promoter
recognition, the results reported are quite high. However, most of the tests
were performed on relatively small data sets, available at that time. To
increase the amount of positive examples a risky procedure of ‘permuting
the bases on non-critical positions’ was proposed and used byO’Neill
(1992). As Horton and Kanehisa(1992) have noted when comparing dif-
ferent methods, the prediction accuracy drops as the amount of input data
grows.

Unfortunately, negative examples are an even more serious issue, as
there is no available data on which regions of DNA areproven not to
contain promoters. So the experiments were done either on randomly
generated sequences (usually matching the relative distribution of bases
to that of real promoters) or on sequences randomly chosen from other

http://citeseer.nj.nec.com/172804.html
http://bioprospector.stanford.edu/
http://www.cse.ucsc.edu/~kent/improbizer/improbizer.html
http://hmmer.wustl.edu/
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genomes. Obviously, such choice of data could give additional hints to
the recognizers.

Today we have much more available data onE.coli—669 σ 70 pro-
moters5 from two partially overlapping databases (Salgadoet al., 2000,
http://www.cifn.unam.mx/Computational_Genomics/regulondb/; Hersh-
berget al., 2001, http://bioinfo.md.huji.ac.il/marg/promec/. Our prelim-
inary analysis of the data has shown much higher variation of all the
elements of thebinding motifmodel than it was in the data sets used
by other authors, so the expected prediction accuracy of applying these
methods to the full data set is smaller.

We propose an alternative approach—not to break up the promoter
regions into ‘important’ and ‘unimportant’ parts, but to compare them as
whole entities. In this paper we make use of recently developed Sequence
Alignment Kernel (Watkins, 2000; Surkovet al., 2001) to define the mea-
sure of similarity between two promoter regions. This measure is further
used in SVM algorithm (Vapnik, 1998), which performs the training and
recognition.

Our method is preferable in cases when we have a sufficient number
of known promoter regions, but might not know anything about their
composition.

5There are still not enough examples from other classes ofE.coli promoters likeσ 38,σ 54, etc.—for statistical
analysis.

http://www.cifn.unam.mx/Computational_Genomics/regulondb/
http://bioinfo.md.huji.ac.il/marg/promec/
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One of the findings of this approach is that in spite of generality the
developed kernel has outperformed in accuracy of the prediction several
other known approaches, which suggests that the information ‘between
the boxes’ might also be important for recognition.
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Problem statement
We will treat genome as a stringS composed ofletters{A,C,G,T}. On
it some specific positions called TSS are given. We assume that, given a
position p, a regionSp−U · · · Sp+D contains enough information to dis-
tinguish whetherp is a TSS or not. We will call such a region a (potential)
promoter region.

We are given atraining setcomposed ofpositive examples(‘true’ pro-
moter regions) andnegative examples(‘false’ promoter regions6). Our
goal is, given an arbitrarypotential promoter regionto be able to find out
whether it is ‘true’ or ‘false’promoter region.

6Theoretically, they do not have to belong to the genome and can be any strings ofU + D lettersfrom {A, C, G, T}.
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Algorithm: Sequence Alignment Kernel
Our method is based on building thekernel functionK (R, Q) as a quan-
titative measure of similarity between two sequencesR and Q. Such a
function should be suitable for classification by Dual SVM (Vapnik, 1998)
or any other kernel-based classification method.

Suppose we are given a matrix Swap(x, y) which defines the score cor-
responding to a single point mutation of letterx into lettery or vice versa
(the matrix is symmetric). We are also given a vector Gap(x) which defines
the score corresponding to a single point deletion or insertion of letterx.

One of the schemes for simultaneous generation of two sequences over
a given alphabet was proposed byWatkins(2000). The generative model
may emit either two letters (one into each sequence), only one letter into
the first sequence (which corresponds to a gap into the second one), or
only one letter into the second sequence (which corresponds to a gap
into the first one). The model is completely defined by the probabilities
for each pair it may emit. For any two non-empty sequences there are
several ways (or paths) to generate them using this model. For every such
path the corresponding probability is the product of probabilities along
the path. The total probabilityP(x, y) that the sequencesx andy will be
generated by the model is the sum of probabilities of all the paths that lead
to generating the given pair.Watkins(2000) has proven that the function
P(x, y) is symmetric and positively definite, and so may be used as a
kernel for SVM and other kernel-based algorithms.



Abstract

Introduction

Problem statement

Algorithm: Sequence …

Comparison of …

Discussion

Acknowledgements

References

If we take the Swap(x, y) matrix and Gap(x) vector to be the logarithms
of the probabilities from Watkins’ model, then the classical Global Align-
ment algorithm by Needleman–Wunsch (Needleman and Wunsch, 1970)
can be regarded as a method to calculate the probability of themost prob-
able pathto generate the two sequences. However, it has not been proven
that the alignment score it provides is non-negatively definite [one of the
necessary conditions for a kernel function to be valid, seeVapnik(1998)].

Straightforward summation of all paths’ probabilities would need expo-
nential time. We would also need to add together a big number of very
small values, which might suffer from floating point arithmetic underflow.
Following the dynamic programming ideas used in Global Alignment,
an algorithm was proposed (Surkov et al., 2001) for fast and precise
calculation of the kernel functionP(x, y).

The algorithm

Suppose we are given two sequences to align,Q = ‘ ACCT’ and R =
‘ ACGT C’. Let us write them along the two dimensions of an empty
matrix (Fig. 2).

In each cellpi , j of the matrix we will be keeping the probability that
Q1··· j aligns withR1···i . It is convenient to start the calculations from the
bottom left corner, which is initialized with the value of 1. Then, we fill
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all the other cells using the recursive formula:

p0,0= 1,

pi ,0 = p0, j = 0, for i > 0 and j > 0,

pi , j ← Swap(Ri , Q j ) · pi−1, j−1

+ Gap(Q j ) · pi , j−1

+ Gap(Ri ) · pi−1, j ,

where the Swap(x, y) matrix and the Gap(x) vector of probabilities are
given as parameters to the algorithm. The kernel value we are looking for
is the probabilityK = p|R|,|Q| in the top right corner of the matrix.

Note, that to calculate values on any ‘backslash’ diagonals of thep
matrix (i + j = D) we only need to know the values on the two preceding
diagonals:i + j = D − 1 andi + j = D − 2. This property is used to
speed up the calculations. If we ‘turn’ the matrixp by 45◦, the diagonals
become rows and columns, yielding O[max(|R|, |Q|)2

] time complexity
and O[max(|R|, |Q|)] space complexity.

Allowing for affine gaps

A more complicated version of this algorithm accounts for ‘affine gaps’
(Gotoh, 1982)—it means that in a run of gaps, the one starting the run
may be given a different probability than the gaps extending the run.
This is attained by using a more sophisticated computational scheme, a



Abstract

Introduction

Problem statement

Algorithm: Sequence …

Comparison of …

Discussion

Acknowledgements

References

Fig. 2. ‘Flat’ version of sequence alignment.

three-layer matrix (Fig. 3, for a close-up seeFig. 4) instead of one layer
described above.

On thed-levelonly diagonal transitions are allowed, which correspond to
substitutions.H-level is used for ‘horizontal’ transitions only, it accounts
for gaps inQ. V-level is used for ‘vertical’ transitions only, it accounts
for gaps inR. The end result is the probabilityK = pd

|R|,|Q|. The core
idea of this stratification is to multiply each transition from the main,d-
layerto any of the two ‘gap layers’ by an additional probability coefficient,
StartGap. If StartGap= 1, there is no difference with the original scheme.
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But if StartGap< 1, it is equivalent to paying an additional penalty in
order to start the gap.

pd
0,0= 1,

pd
0, j = pd

i ,0 = 0, for i > 0 and j > 0,

ph
0, j = ph

i ,0 = pv
0, j = pv

i ,0 = 0, for i > 0 and j > 0,

ph
i , j ← Gap(Q j ) · (ph

i , j−1+ pd
i , j−1 · StartGap),

pv
i , j ← Gap(Ri ) · (pv

i−1, j + pd
i−1, j · StartGap),

pd
i , j ← Swap(Ri , Q j ) · (ph

i−1, j−1+ pv
i−1, j−1+ pd

i−1, j−1).

The stratification has a slow-down impact on the performance,7 but gives
more flexibility to the system.

In addition to what is described above, we propose the following:

1. Take the root of power|R| + |Q| from each kernel value—this gives
us a close approximation to the similarity measure ‘per symbol’ (or
rather ‘per gap’), and makes the kernel values relatively independent
of sequence lengths|R| and|Q|.

7In fact, both the execution time and the memory needs increase in a constant number of times—this does not affect
the complexity of the algorithm.



Abstract

Introduction

Problem statement

Algorithm: Sequence …

Comparison of …

Discussion

Acknowledgements

References

Fig. 3. ‘3D’ version of sequence alignment, which accounts for affine gaps.

2. After the whole matrix of kernel valuesK has been found, normalize
the matrix:

K ′(X, Y) =
K (X, Y)

√
K (X, X) · K (Y, Y)

.

Because a kernel corresponds to dot product in some imaginary fea-
ture space between two vectors, by this normalization we get rid of the
‘lengths’ of the vectors, so that only the cosine of the angle between
them remains.
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Fig. 4. A local fragment of the ‘3D’ version of sequence alignment.

3. Then take each element to some fixed powerα > 1; this gives us one
more convenient parameter to tune.8 The need for this arises when
the vectors are ‘too much different’ from each other, so that after
the normalization we get ones on the diagonal,K ′(X, X) = 1, and
nearly zeros everywhere else.

To test this method on the problem of prokaryotic promoter recognition,
the following parameter values were found to be optimal: StartGap=

8We are unaware of a theoretical proof that this operation is valid for kernel functions in general, but in our
experiments involving generating hundreds of kernel matrices every single one was positively definite.
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Table 1. Optimal Swap(x, y) matrix and Gap(x) vector used for
σ 70 prokaryotic promoter recognition

Swap(x, y) A C G T
A 1.0000 0.1738 0.3679 0.1738
C 0.1738 1.0000 0.1738 0.3679
G 0.3679 0.1738 1.0000 0.1738
T 0.1738 0.3679 0.1738 1.0000
Gap(x) 0.1054 0.1054 0.1054 0.1054

0.05,α = 1.3. We obtained Swap(x, y) matrix and Gap(x) vector by
exponentiationSankoff-76 transition/transversionscore matrix (Sankoff
et al., 1976), which happened to work well applied to our problem (see
Table 1).
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Comparison of different methods
Sequence Alignment Kernel was used in conjunction with Dual Support
Vector Machine (Vapnik, 1998). This method was tested among several
different promoter region predicting methods.

The data

As the primary source of data we used the sequenced genome of
E.coli (strain K-12, substrain MG1655)Blattner et al. (1997). A
list of 669 experimentally confirmedσ 70 promoters with known TSS
positions was put together from RegulonDB [Salgadoet al. (2000);
http://www. cifn.unam.mx/ Computational_Genomics / regulondb/and
PromEC (Hershberget al., 2001); http://bioinfo.md.huji.ac.il/marg/
promec/] databases. Thenpromoter regions[T SS− 60· · · T SS+ 19]
were taken as thepositive examples.

As there is no experimentally confirmed negative data (i.e. the positions
that are confirmednot to be TSS), we had to take the risk and choose the
negative examplesrandomly from the same chromosome. Approximately
81% of known TSS are located in the intergenic non-coding regions and
19% in the coding regions. So two differentnegative examplesets were
prepared:

(a) coding negative example setcontaining 709 subsequences, 80 letters
each, from the coding regions (genes) and

http://www.cifn.unam.mx/Computational_Genomics/regulondb/
http://bioinfo.md.huji.ac.il/marg/promec/
http://bioinfo.md.huji.ac.il/marg/promec/
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(b) non-coding negative example setcontaining 709 subsequences, 80
letters each, from the non-coding regions (intergenic spacers).

The hypothetical non-TSS in both sets of examples is located in the 61st
position, so the examples have the same format as the positive ones:
[nonT SS− 60· · · nonT SS+ 19].

The same data points were used when testing all the other methods.

Other methods

Here we briefly9 list the methods that we used to compare with our
Sequence Alignment Kernel based method. In all methods except the
first two we used SVM in the last stage, simple or kernel-based.

• BLAST-based Nearest Neighbours method (Altschul et al., 1997) is
simply a Nearest Neighbours classifier where the distance is defined
by pairwise BLASTn E-value. On each iteration the training set is
converted into BLAST-compatible database, then each test example
is looked up in the database to find the nearest match.

• Boxes+ threshold method (Staden,1984; Harley and Reynolds,1987)
is probably the best known technique for automatic motif discovery.
Here a hypothesis is made thatσ 70 promoter regions contain but two
importantbinding motifson relatively fixed positions (seeFig. 1).
Every potential promoter area is converted into four numerical features

9For full description see (Gordon, 2002).
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(matching the scores for the ‘−10’ and ‘−35’ binding motifsand
likelihoods of the two distances, from TSS to ‘−10’ motif and ‘−10’
motif to ‘−35’ motif). Then the four are added together, forming the
‘general’ likelihood. The optimal threshold value for it is found on
the training set, and then used to classify the test set examples.

• Boxes+SVM method is very similar to the previous one, but the
four likelihoods are not added. They are used as four independent
features in the standard SVM routine. Simply speaking, SVM finds
the best combination of those features, of which the sum is but one, so
it is easily explainable, why SVM-based methods generally perform
better.

• Boxes and regulatory sites+SVM method (Bailey and Elkan, 1995)
is based on the previous method, where three additional features are
generated to each example from CRP, IHF and LexAregulatory sites.
The resulting 4+ 3 features were used in the standard SVM routine.

• Zone likelihood+SVM method (Oppon and Hide, 1998) uses the
hypothesis thatpromoter regionhas a distribution ofoligonucleotides
(short substrings of a given length) which is different from the overall
distribution in the DNA. UnlikeOppon and Hide(1998), we suspected
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that differentzonesinside thepromoter regionhave different distri-
butions. We have found five zones, whose local distributions well
predicted the promoter regions.10

The score was computed for every such zone and the resulting five
features were used in the standard SVM routine.

• Locality-improved kernel+SVM method (Schölkopfet al., 1998)
was originally applied toTranslation Initiation Sitesprediction (Zien
et al., 2000, locality-improved kernel), but as it suits relatively general
purpose of classifying DNA regions, we applied it to prediction of
promoter regions.11

This method directly yielded the kernel function which was used in
the kernel-based SVM routine.

Criteria and results of comparison

In every experiment thepositive examplesand thenegative exampleswere
mixed together, 1/2 of them were randomly chosen to serve astraining
and the other 1/2—astest examples. Then the recognition program was
executed. After each execution four numbers were calculated:

• TP, true positives, #{correctly recognized positives},

10 Relative to the TSS they are: (i) [−71· · · −61] in mononucleotides, (ii) [−60· · · −41] in mononucleotides,
(iii) [−40· · · −35] in pentanucleotides, (iv) [−17· · · −8] in pentanucleotides, (v) exact position of TSS in
mononucleotides.
11 The parameters that were found to give the best prediction are:l = 2,d1 = 4,d2 = 3.
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• TN, true negatives, #{correctly recognized negatives},
• FN, false negatives, #{positives recognized as negatives},
• FP, false positives, #{negatives recognized as positives}.

For every method, 100 executions were performed. Then the average
TP, TN, FN and FP were found and the following relative measures were
calculated:

• FN%= FN/(TP+ FN)× 100%,
• FP%= FP/(TN + FP)× 100%,
• AE% (average error)= (FN+ FP)/(TP+ TN + FP+ FN)×100%.
• Sn (sensitivity or recall)= TP/(TP+ FN),
• Sp (specificity or precision)= TP/(TP+ FP),
• CC (correlation coefficient)=

TP× TN − FP× FN
√

(TP+ FP)× (TN + FN)× (TP+ FN)× (TN + FP)
.

TheTable 2shows that Sequence Alignment Kernel based method out-
performed other tested methods on average error and false negatives. This
result is important, since it is clear that Sequence Alignment Kernel does
not use any prior information as to what chunks of thepromoter region
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Table 2. Different methods compared, results averaged over 100
executions

Method AE% FN% FP% Sn Sp CC
Sequence Alignment 16.5 18.5 14.6 0.82 0.84 0.67

Kernel+SVM 18.6 19.0 18.2 0.81 0.81 0.63
Boxes+SVM 19.1 23.6 14.8 0.76 0.83 0.62

20.5 25.6 15.7 0.74 0.82 0.59
Boxes+ threshold 19.5 24.4 14.8 0.76 0.83 0.61

21.0 28.4 14.0 0.72 0.83 0.58
Zone likelihood+SVM 21.0 32.2 10.4 0.68 0.86 0.59

22.5 33.1 12.5 0.67 0.84 0.56
Locality-improved 19.3 24.9 14.1 0.75 0.83 0.62

kernel+SVM 23.5 38.8 9.1 0.61 0.86 0.55
Boxes & regulatory 16.8 22.7 11.3 0.77 0.87 0.67

sites+SVM 30.3 25.7 34.6 0.74 0.67 0.40
Blast-based Nearest 34.6 40.9 28.7 0.59 0.66 0.31

Neighbours 35.4 40.9 30.2 0.59 0.64 0.29

Upper rows: negative data is taken from coding regions (bold shows best values). lower rows:
negative data is taken from non-coding regions (italics show best values).

are important and what are not. Obviously, some information ‘between
the boxes’ is also important and needs more attention.12

12 It is interesting to note that, although boxes & regulatory sites method is quite close to Sequence Alignment
Kernel when tested on thepositive examplesandcoding negative example set, on the set composed ofpositive
examplesandnon-coding negative example setit seriously falls behind. We think it happens because the regulatory
sites are well spread in the non-coding regions, so they affect both positive and negative examples alike.
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Discussion
We developed a new SVM-based approach using Sequence Alignment
kernel, which achieves better prediction accuracy than that of other SVM-
based methods. But it is also important to compare our methods with other
non-SVM methods reported in the literature.

O’Neill and Chiafari (1989) used consensus-based approach on 47
known E.coli promoters, dividing them into three classes with 16, 17
and 18 bases separating−35 and−10 regions. Overall 77% were cor-
rectly identified, but the level of false positives was very high. Later, this
work was continued (O’Neill , 1991, 1992) and the following prediction
accuracies were achieved: 78–100% for 16 bp spacing, 97% for 17 bp
spacing and 79% for 18 bp spacing.

Another paper (Demeler and Zhou, 1991) describes ‘neural network
optimization forE.coli promoter prediction methods’. A neural network
was trained on a set of 80 knownE.colipromoter sequences and a different
number of random sequences. The prediction accuracy of the resulting
weight matrix was tested against a separate set of 30 known promoter
sequences and 1500 random sequences with equal composition of A, C, G
and T bases. Accuracies of 100% on promoters and 98.4% on the random
sequences were achieved with optimal parameters. However, these figures
could have been very much affected by the choice of data. First, both
training and test test were very small. Second, because of the way the
negative examples were generated, the promoter search protocol is likely
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to be highly sensitive to the average A/T ratio of the input due to A/T
relative richness of promoters (Mulligan and McClure, 1986; O’Neill and
Chiafari, 1989).

Horton and Kanehisa(1992) reported ‘perceptron type neural network
for prediction ofE.coliσ 70 promoters’. Moreover, they reconstructed five
previously reported methods and compared the quality of prediction of
these methods and their own approach on the same data sets. Although
prediction accuracy in previous reports (Demeler and Zhou,1991; O’Neill ,
1991, 1992) was very high, training and testing of perceptron type neural
network in the same data gave comparable results. ‘The difference in
prediction rates with these different data sets seems to be explainable to
a large extent by the differences in information content of the combined
training and test sets’ (Horton and Kanehisa, 1992): both of previously
used data sets were essentially subsets of the one used by Horton and
Kanehisa. In particular, O’Neill’s data only contained promoters with
17 bp spacing.

Later,Mahadevan and Ghosh(1994) reported on using neural networks
trained on 106 promoters and random sequences which were 60% A/T
rich and tested on 126 promoters for recognition ofE.coli promoters of
all spacing classes (15–21 bp). This network showed 98% accuracy on
promoters and 90.2% accuracy on non-promoters (tested on 500 randomly
generated sequences).
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At last,Leunget al. (2001) presented ‘basic gene grammars and DNA-
ChartParser for language processing ofE.coli promoter DNA sequences
approach’. The method was tested on 300E.coli promoters and 300 non-
promoter random sequences. Four experiments, performed using different
‘grammar rules’, have yielded the best prediction of 76% accuracy with
82% specificity and 69% sensitivity.

It should be noted that the set of knownE.coliσ 70promoters that we used
both for training and test is the largest and includes the previously used
ones.Horton and Kanehisa(1992) have noted the drop in prediction accu-
racy with larger training and/or test data sets. Taking into consideration
the tendency observed, our sequence alignment kernel gives quite com-
parable results. Moreover, in some of the experiments mentioned above
random sequences were used as negative examples. We believe it is not
quite fair, as they may differ too much from the actual genomic sequences.
The negative examples we are using are not only from the same genome—
they are from non-coding regions, to avoid the distributional ‘hints’ of the
coding areas.

The future research would include reconstruction of other published
methods, then training and testing them on our expanded data set. There is
also a direction we would like to undertake to assess the ‘trustworthiness’
of our predictions, by usingconfidenceandcredibility measures for each
individual prediction (Gammerman and Vovk, 2002).
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