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Abstract

In this paper we propose a new method for recognition of prokaryotic
promoter regions with startpoints of transcription. The method is based o
Sequence Alignment Kernel, a function reflecting the quantitative measu
of match between two sequences. This kernel function is further used
Dual SVM, which performs the recognition.

Several recognition methods have been trained and tested on positi
data set, consisting of 66&'%-promoter regions with known transcription
startpoints of Escherichia coli and two negative data sets of 709 example
each, taken from coding and non-coding regions of the same genome. T
results show that our method performs well and achieves 16.5% averag
error rate on positive & coding negative data and 18.6% average error
rate on positive & non-coding negative data.

Availability: The demo version of our method is accessible from our
websitehttp://mendel.cs.rhul.ac.uk/

Contact:leo@cs.rhul.ac.uk

Abstract
Introduction
Problem statement

Algorithm: Sequence ...

Zomparison of ...
Discussion

Acknowledgements

References



http://mendel.cs.rhul.ac.uk/
mailto: leo@cs.rhul.ac.uk

I ntrOd u Ct| on Abstract

. . . Introduction
Promoter regions an area on the chromosome which determines wherg

the transcription of a particular gene(s) should be initiated and on wha
conditions. In prokaryotic organisms theomoter regioroccupies several — [INSSEENSr.
hundred base pairs upstreaniadnscription Start Sit€éT S and a smaller Discussion
area downstream of TSS, and may serve for transcription of a single gerrrrm o
as well as for a group of genes (an operon). References
During the last five years many prokaryotic genomes have bee
sequenced, including that Bscherichia col(Blattneret al., 1997). The
gene content of these genomes was mostly computationally recognizeg
(whichis usually in good agreement with later lab experiments). However
the promoter regions and TSS are still undetermined in most cases a
the software able to accurately predict promoters in sequenced genom
is not yet available in public domaifromoter recognitionthe compu-
tational task of finding the promoter regions on a DNA sequence, is ver
important for defining the transcription units responsible for specific path
ways (because gene prediction alone cannot provide the solution) and f
analysis of gene/operon regulation.
Experimental studies of prokaryotic promoter regions show that the
contain a certain set dfinding motifs—relatively short chunks of DNA
to which the RNA polymerase and special regulatory proteins can bind i
order to initiate and control the transcriptiddg Hasetlet al., 1998. The
majority of prokaryotic promoter recognition approaches usd®iheing

Problem statement

Algorithm: Sequence ...
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Problem statement
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Algorithm: Sequence ...

Fig. 1. Prokaryotico ’° promoter region with TSS~10’ and ‘—35’ binding motifs and two spacers. Comparison of ...
Discussion

motif based model gbromoter regionwhich emphasizes the importance |a iR
of binding motifsand essentially neglects the data between ttepaders. References
Figure 1shows such a model for prokaryotic® promoter region with
two binding motifsand twospacers

Because certain variation in the lengths of #pacersand informa-
tional content of eachinding motifis allowed? the search for the ‘right’
placement obinding motifds not completely trivial.

Different general approximate matching techniques, as well as thg
ones, specifically designed for this task, are usedbioding motif
search Crochemore and Sagd2002 and references therein). Various
approaches based on weight matric&s(len1984 Harley and Reynolds
1987 Mulligan and McClure 1986, neural networksl{ukashinet al.,
1989 Demeler and Zhoul 991, O'Neill, 1991, 1992 Horton and Kane-
hisa 1992 Mahadevan and Ghosii994 Pedersen and Engelbrecht
1995, generalized portraitAlexandrov and Mironoy 1990, hidden
markov models Pederseret al., 1996, genetic algorithms (Bailey and

4For example, so-called -10-box 6f© bacterial promoter may look like TATAAT, CATAAT, TATAAA, etc.




Hart, http://citeseer.nj.nec.com/172804.hxnslyntactic recognition algo-  [EESES

rithms (Rosenbluetlet al, 1996 Leunget al., 2001 and automatic motif Introduction
discovery techniqueddertz and Stormgpl996 Bailey and Elkan1994 Problem statement
1995 Tompa 1999 Liu et al., http://bioprospector.stanford.edident, Algorithm: Sequence ...
http://www.cse.ucsc.edu/ kent/improbizer/improbizer.hitrhiave been Comparison of ..
proposed to serve this purpose. There are also separate approaches tha i

the motifs found as their input to some ‘second level’ recognizers, such ottt
hidden Markov models, neural networks or support vector machines, fo
further prediction Eddy, 1998 http://hmmer.wustl.edu/Grundyet al.,
1997 Pavlidiset al., 2001).

When such approaches are specifically applied to prokaryotic promotg
recognition, the results reported are quite high. However, most of the tes
were performed on relatively small data sets, available at that time. Tq
increase the amount of positive examples a risky procedure of ‘permutin
the bases on non-critical positions’ was proposed and used'Kgill
(1992. As Horton and Kanehis@l 992 have noted when comparing dif-
ferent methods, the prediction accuracy drops as the amount of input da
grows.

Unfortunately, negative examples are an even more serious issue,
there is no available data on which regions of DNA preven not to
contain promoters. So the experiments were done either on randoml
generated sequences (usually matching the relative distribution of bast
to that of real promoters) or on sequences randomly chosen from othe
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genomes. Obviously, such choice of data could give additional hints tqEYSIEws:

the recognizers. Introduction

Today we have much more available data Bioli—669 o ° pro- Problem statement
moters from two partially overlapping database3algadeet al., 200Q Algorithm: Sequence ...
http://www.cifn.unam.mx/Computational_Genomics/regulonét®rsh- Comparison of ..

berget al,, 2001, http://bioinfo.md.huji.ac.il/marg/promecDur prelim- Discussion
inary analysis of the data has shown much higher variation of all thejiis i
elements of thébinding motifmodel than it was in the data sets used
by other authors, so the expected prediction accuracy of applying theg
methods to the full data set is smaller.

We propose an alternative approach—not to break up the promotg
regions into ‘important’ and ‘unimportant’ parts, but to compare them as
whole entities. In this paper we make use of recently developed Sequen
Alignment Kernel (Watking 200Q Surkovet al.,, 200]) to define the mea-
sure of similarity between two promoter regions. This measure is furthe
used in SVM algorithmVapnik, 1998, which performs the training and
recognition.

Our method is preferable in cases when we have a sufficient numb
of known promoter regions, but might not know anything about their
composition.

References

5There are still not enough examples from other classes.adli promoters likeo 38, 554, etc.—for statistical
analysis.



http://www.cifn.unam.mx/Computational_Genomics/regulondb/
http://bioinfo.md.huji.ac.il/marg/promec/

One of the findings of this approach is that in spite of generality the
developed kernel has outperformed in accuracy of the prediction sever;
other known approaches, which suggests that the information ‘betwee
the boxes’ might also be important for recognition.
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Problem statement Abstract

We will treat genome as a strinfgcomposed ofetters{A,C,G,T}. On introduction
it some specific positions called TSS are given. We assume that, given
position p, a regionSy_y - - - Sp4-p contains enough information to dis-
tinguish whethep is a TSS or not. We will call such a region a (potential)
promoter region Acknowledgements
We are given draining setcomposed opositive exampleétrue’ pro- References

moter regiony and negative examplegfalse’ promoter region$). Our
goal is, given an arbitrangotential promoter regioto be able to find out
whether it is ‘true’ or ‘false’promoter region

Problem statement

Algorithm: Sequence ...

Comparison of ...
Discussion

5Theoretically, they do not have to belong to the genome and can be any strings Bflettersfrom {A, C, G, T}.




Algorithm: Sequence Alignment Kernel Abstract

Introduction

Our method is based on building thkernel functionk (R, Q) as a quan-
titative measure of similarity between two sequenBeand Q. Such a
function should be suitable for classification by Dual S\ nik, 1998 Comparison of ...
or any other kernel-based classification method. Discussion
Suppose we are given a matrix Swapy) which defines the score cor- [N
responding to a single point mutation of letkeinto lettery or vice versa References
(the matrix is symmetric). We are also given a vector Gapvhich defines
the score corresponding to a single point deletion or insertion of better
One of the schemes for simultaneous generation of two sequences o
a given alphabet was proposedWatkins(2000. The generative model
may emit either two letters (one into each sequence), only one letter int
the first sequence (which corresponds to a gap into the second one),
only one letter into the second sequence (which corresponds to a g
into the first one). The model is completely defined by the probabilities
for each pair it may emit. For any two non-empty sequences there ar
several ways (or paths) to generate them using this model. For every su(
path the corresponding probability is the product of probabilities along
the path. The total probabiliti? (x, y) that the sequencesandy will be
generated by the model is the sum of probabilities of all the paths that lea
to generating the given palWatkins(2000 has proven that the function
P(x,Yy) is symmetric and positively definite, and so may be used as ¢
kernel for SVM and other kernel-based algorithms.

Problem statement

Algorithm: Sequence ...




If we take the Swafx, y) matrix and Gapx) vector to be the logarithms  [ESIES
of the probabilities from Watkins’ model, then the classical Global Align- [esisy
ment algorithm by Needleman—Wunsateedleman and Wunsch970 Problem statement

can be regarded as a method to calculate the probability ohtse prob- Algorithm: Sequence ...

able pathto generate the two sequences. However, it has not been prove il
that the alignment score it provides is non-negatively definite [one of thcjid
necessary conditions for a kernel function to be valid \gemik (1998)]. Acknowledgements

Straightforward summation of all paths’ probabilities would need expo-[|JRSEhSs
nential time. We would also need to add together a big number of ver
small values, which might suffer from floating point arithmetic underflow.
Following the dynamic programming ideas used in Global Alignment,
an algorithm was proposediyrkov et al, 2001) for fast and precise
calculation of the kernel functioR (X, y).

The algorithm

Suppose we are given two sequences to aligns ‘ACCT and R =
‘ACGTC. Let us write them along the two dimensions of an empty
matrix (Fig. 2).

In each cellp; j of the matrix we will be keeping the probability that
Q1...j aligns withRy..j. It is convenient to start the calculations from the
bottom left corner, which is initialized with the value of 1. Then, we fill



all the other cells using the recursive formula: Abstract

Introduction
Po,0 = 1, Problem statement
Pio= Po,j = 0, fori >0 andj > 0, Algorithm: Sequence ...
Comparison of ...
Pi,j < SW&F(Ri, QJ) “Pi-1,j-1 Discussion
+ GaF(Qj). pi,j—l Acknowledgements
References
+ GapR) - pi-1,,

where the Swafx, y) matrix and the Gafx) vector of probabilities are
given as parameters to the algorithm. The kernel value we are looking fo
is the probabilityX" = pjry,|q| in the top right corner of the matrix.

Note, that to calculate values on any ‘backslash’ diagonals ofpthe
matrix (| + ] = D) we only need to know the values on the two preceding
diagonalsi + j = D — 1 andi + ] = D — 2. This property is used to
speed up the calculations. If we ‘turn’ the matpy 45°, the diagonals
become rows and columns, yieldingr@ax(|R|, |Q|)?] time complexity
and max(|R|, | Q])] space complexity.

Allowing for affine gaps

A more complicated version of this algorithm accounts for ‘affine gaps’
(Gotoh 1982—it means that in a run of gaps, the one starting the run
may be given a different probability than the gaps extending the run
This is attained by using a more sophisticated computational scheme,
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Fig. 2. ‘Flat’ version of sequence alignment.

three-layer matrixKig. 3, for a close-up seEig. 4) instead of one layer
described above.

Onthed-levelonly diagonal transitions are allowed, which correspond to
substitutionsH-levelis used for ‘horizontal’ transitions only, it accounts
for gaps inQ. V-levelis used for ‘vertical’ transitions only, it accounts
for gaps inR. The end result is the probabilif = p|dR|,|Q|' The core
idea of this stratification is to multiply each transition from the main,
layerto any of the two ‘gap layers’ by an additional probability coefficient,
StartGap. If StartGap- 1, there is no difference with the original scheme.




But if StartGap< 1, it is equivalent to paying an additional penalty in [EESEs

order to start the gap. Introduction
Problem statement
pS’O =1, Algorithm: Sequence ...
d d . . Comparison of ...
pO,j = Pio= 0, fori>0 andj >0, Discussion
pg,j — p|h,0 — pgj — p|vo — 0’ fori 2 0 and J 2 O, Acknowledgements

References

p'; < GapQj) - (pj_1 + pfj_; - StartGap,
IOiV,j < GapR) - (pi"_l,j + pid_l,j - StartGap,
pid,j <~ SwapR;, Qj) - (pih_l,j_1+ Pigj1t pid_lyj_l).

The stratification has a slow-down impact on the performdrie gives
more flexibility to the system.

In addition to what is described above, we propose the following:

1. Take the root of powelR| 4+ | Q| from each kernel value—this gives
us a close approximation to the similarity measure ‘per symbol’ (or
rather ‘per gap’), and makes the kernel values relatively independe
of sequence lengthf| and|Q].

’In fact, both the execution time and the memory needs increase in a constant number of times—this does
the complexity of the algorithm.
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v-layer A =

Fig. 3. ‘3D’ version of sequence alignment, which accounts for affine gaps.

2. After the whole matrix of kernel valugs has been found, normalize
the matrix:

K'(X,Y) = RXY)
T JKOGX) - KOYLY)

Because a kernel corresponds to dot product in some imaginary fee
ture space between two vectors, by this normalization we get rid of the
‘lengths’ of the vectors, so that only the cosine of the angle betwee
them remains.
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Fig. 4. A local fragment of the ‘3D’ version of sequence alignment.

3. Thentake each element to some fixed power 1; this gives us one
more convenient parameter to tufh@he need for this arises when
the vectors are ‘too much different’ from each other, so that after
the normalization we get ones on the diagotdl X, X) = 1, and
nearly zeros everywhere else.

To test this method on the problem of prokaryotic promoter recognition,
the following parameter values were found to be optimal: StartGap

8We are unaware of a theoretical proof that this operation is valid for kernel functions in general, but
experiments involving generating hundreds of kernel matrices every single one was positively definite.

Algorithm: Sequence ...



Table 1. Optimal Swapx, y) matrix and Gap() vector used for Abstract

o '0 prokaryotic promoter recognition Introduction

SwaRElY) A c G T Problem statement

A 1.0000 0.1738 0.3679 0.1738 Algorithm: Sequence ...
c 0.1738 1.0000 0.1738 0.3679 Comparison of

G 0.3679 0.1738 1.0000 0.1738

T 0.1738 0.3679 0.1738 1.0000 Discussion

Gap) 0.1054 0.1054 0.1054 0.1054

Acknowledgements

References

0.05,¢ = 1.3. We obtained Swdp, y) matrix and Gafx) vector by
exponentiatiorSankoff-76 transition/transversi@tore matrix $ankoff

et al, 1976, which happened to work well applied to our problem (see
Table J).




Comparison of different methods Abstract

Introduction

Sequence Alignment Kernel was used in conjunction with Dual Suppor
Vector Machine Yapnik, 1998. This method was tested among several
different promoter region predicting methods.

Problem statement

Algorithm: Sequence ...

Comparison of ...

Discussion

The data Acknowledgements
As the primary source of data we used the sequenced genome @SS
E.coli (strain K-12, substrain MG1655Blattner et al. (1997). A
list of 669 experimentally confirmea’® promoters with known TSS
positions was put together from RegulonDBalgadoet al. (2000);
http://www. cifn.unam.mx/ Computational_Genomics/regulondland
PromEC Hershberget al, 2001); http://bioinfo.md.huji.ac.il/marg/
promec] databases. Thepromoter regiondT SS— 60--- T SS+ 19]
were taken as thpositive examples

As there is no experimentally confirmed negative data (i.e. the position
that are confirmedotto be TSS), we had to take the risk and choose the
negative examplaandomly from the same chromosome. Approximately
81% of known TSS are located in the intergenic non-coding regions an(
19% in the coding regions. So two differamtgative examplsets were
prepared:

(a) coding negative example smintaining 709 subsequences, 80 letters
each, from the coding regions (genes) and
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(b) non-coding negative example seintaining 709 subsequences, 80 EEEE

letters each, from the non-coding regions (intergenic spacers). Introduction

. . . ) Problem statement
The hypothetical non-TSS in both sets of examples is located in the 615

position, so the examples have the same format as the positive ong

Algorithm: Sequence ...
Comparison of ...

[NnoNnT SS-60---nonT SSt+ 19]. Discussion
The same data points were used when testing all the other methods. RS
Other methods References

Here we briefly list the methods that we used to compare with our
Sequence Alignment Kernel based method. In all methods except th
first two we used SVM in the last stage, simple or kernel-based.

« BLAST-based Nearest Neighbours methddifchul et al., 1997) is
simply a Nearest Neighbours classifier where the distance is define
by pairwise BLASTn E-value. On each iteration the training set is
converted into BLAST-compatible database, then each test exampl
is looked up in the database to find the nearest match.

« Boxes+ threshold methodStaden1984 Harley and Reynold4.987)
is probably the best known technique for automatic motif discovery.
Here a hypothesis is made that® promoter regions contain but two
importantbinding motifson relatively fixed positions (se€ig. 1).
Every potential promoter areais converted into four numerical features

9For full description seeGordon 2002).




(matching the scores for the-10’ and ‘—35’ binding motifsand
likelihoods of the two distances, from TSS te10’ motif and ‘—10’
motif to ‘—35’ motif). Then the four are added together, forming the
‘general’ likelihood. The optimal threshold value for it is found on
the training set, and then used to classify the test set examples.

Boxes+ SVM method is very similar to the previous one, but the

four likelihoods are not added. They are used as four independe

features in the standard SVM routine. Simply speaking, SVM finds
the best combination of those features, of which the sumis but one, s
it is easily explainable, why SVM-based methods generally perform
better.

Boxes and regulatory sitasSVM method Bailey and Elkan1995
is based on the previous method, where three additional features a
generated to each example from CRP, IHF and LesgAilatory sites
The resulting 4+ 3 features were used in the standard SVM routine.

Zone likelihood- SVM method QOppon and Hide1998 uses the
hypothesis thgtromoter regiorhas a distribution obligonucleotides
(short substrings of a given length) which is different from the overall
distribution inthe DNA. UnlikeDppon and Hid¢1998, we suspected

Abstract
Introduction
Problem statement

Algorithm: Sequence ...

Comparison of ...

Discussion
Acknowledgements
References




that differentzonesinside thepromoter regiorhave different distri- Abstract
butions. We have found five zones, whose local distributions wel|istey
predicted the promoter region. Problem statement
The score was computed for every such zone and the resulting fiv iU R
features were used in the standard SVM routine. Comparison of ..

. Locality-improved kernek SVM method Gcholkopfet al, 1999 piscussion
was originally applied td@ranslation Initiation Siteprediction Zien
etal, 200Q locality-improved kernel), but as it suits relatively general
purpose of classifying DNA regions, we applied it to prediction of
promoter regions?!

This method directly yielded the kernel function which was used in
the kernel-based SVM routine.

Acknowledgements

References

Criteria and results of comparison

In every experiment thpositive examplesnd thenegative examplegsere
mixed together, 1/2 of them were randomly chosen to senteaasng
and the other 1/2—a®st examplesThen the recognition program was
executed. After each execution four numbers were calculated:

« TP, true positives, #{correctly recognized positives},

10 Relative to the TSS they are: (i}-1--- —61] in mononucleotides, (ii)§60- - - —41] in mononucleotides

(iii) [ —40--- —35] in pentanucleotides, (iv)-{17--- —8] in pentanucleotides, (v) exact position of TSS
mononucleotides.

1 The parameters that were found to give the best prediction ar@,d; = 4,d, = 3.




« TN, true negatives, #{correctly recognized negatives}, Abstract
« FN, false negatives, #{positives recognized as negatives}, Introduction

.. . . o, Problem statement
. FP, false positives, #{negatives recognized as positives}.

Algorithm: Sequence ...

. Comparison of ...
For every method, 100 executions were performed. Then the averacFess

TP, TN, FN and FP were found and the following relative measures Wer gy
calculated: References

FN% = FN/(TP + FN) x 100%,

FP%= FP/(TN + FP) x 100%,

AE% (average error= (FN + FP)/(TP+ TN + FP+ FN) x 100%.
Sn (sensitivity or recally= TP/(TP + EN),

Sp (specificity or precisiony= TP/(TP + FP),

« CC (correlation coefficient

TP x TN — FP x FN
VOPFFP) x (IN+FN) x (TP+FN) x (IN+FP)’

TheTable 2shows that Sequence Alignment Kernel based method out
performed other tested methods on average error and false negatives. T
result is important, since it is clear that Sequence Alignment Kernel doe
not use any prior information as to what chunks of pnemoter region



Table 2. Different methods compared, results averaged over 100 Abstract

executions Introduction
Method AE% FN% FP% Sn Sp  CC Problem statement
Sequence Alignment 16.5 185 146 0.82 0.84 0.67 Algorithm: Sequence
Kernel+ SVM 18.6 19.0 18.2 0.81 081 0.63 Comparison of
Boxes+ SVM 19.1 23.6 14.8 0.76 0.83 0.62
20.5 25.6 157 074 082 0.59 Discussion
Boxes+ threshold 19.5 24.4 14.8 0.76 0.83 0.61 Acknowledgements
21.0 28.4 14.0 0.72 0.83 0.58
Zone likelihood+ SVM 21.0 32.2 10.4 0.68 0.86 0.59 References
22.5 33.1 12.5 0.67 0.84 0.56
Locality-improved 19.3 24.9 14.1 0.75 0.83 0.62
kernelH SVM 23.5 38.8 9.1 0.61 0.86 0.55
Boxes & regulatory 16.8 22.7 11.3 0.77 0.87 0.67
sites+ SVM 30.3 25.7 34.6 0.74 0.67 0.40
Blast-based Nearest 34.6 40.9 28.7 059 066 0.31
Neighbours 35.4 40.9 30.2 059 0.64 0.29

Upper rows: negative data is taken from coding regions (bold shows best values). lower rows:
negative data is taken from non-coding regions (italics show best values).

are important and what are not. Obviously, some information ‘betwee
the boxes’ is also important and needs more atterifion.

12 1t is interesting to note that, although boxes & regulatory sites method is quite close to Sequence Ali
Kernel when tested on thgositive exampleand coding negative example setn the set composed pbsitive
examplesindnon-coding negative example #eteriously falls behind. We think it happens because the reguld
sites are well spread in the non-coding regions, so they affect both positive and negative examples alike.




Discussion Abstract

Introduction

We developed a new SVM-based approach using Sequence Alignme
kernel, which achieves better prediction accuracy than that of other SVM
based methods. Butitis also important to compare our methods with oth (ST,
non-SVM methods reported in the literature. Discussion

O’Neill and Chiafari (1989 used consensus-based approach on 47
known E.coli promoters, dividing them into three classes with 16, 17 RSN
and 18 bases separatirg85 and—10 regions. Overall 77% were cor-
rectly identified, but the level of false positives was very high. Later, this
work was continued@’'Neill, 1991, 1992 and the following prediction
accuracies were achieved: 78-100% for 16 bp spacing, 97% for 17 b
spacing and 79% for 18 bp spacing.

Another paper DPemeler and Zhoul991) describes ‘neural network
optimization forE.coli promoter prediction methods’. A neural network
was trained on a set of 80 knowncolipromoter sequences and a different
number of random sequences. The prediction accuracy of the resulti
weight matrix was tested against a separate set of 30 known promotg
seqguences and 1500 random sequences with equal composition of A, C,
and T bases. Accuracies of 100% on promoters and 98.4% on the randao
seguences were achieved with optimal parameters. However, these figu
could have been very much affected by the choice of data. First, bot
training and test test were very small. Second, because of the way t
negative examples were generated, the promoter search protocol is like

Problem statement

Algorithm: Sequence ...



to be highly sensitive to the average A/T ratio of the input due to A/T ST
relative richness of promotersi(lligan and McClure1986 O’Neill and Introduction
Chiafari 1989. Problem statement

Horton and Kanehisél992 reported ‘perceptron type neural network [EatiliiEsi s
for prediction ofE.colio ' promoters’. Moreover, they reconstructed five Ik
previously reported methods and compared the quality of prediction Ojes
these methods and their own approach on the same data sets. Althou ittt
prediction accuracy in previous reporigmeler and Zhau 997, O'Neill,
1991, 1992 was very high, training and testing of perceptron type neural
network in the same data gave comparable results. ‘The difference i
prediction rates with these different data sets seems to be explainable
a large extent by the differences in information content of the combined
training and test setsHorton and Kanehisal992: both of previously
used data sets were essentially subsets of the one used by Horton &
Kanehisa. In particular, O’Neill’s data only contained promoters with
17 bp spacing.

Later,Mahadevan and Ghogh994) reported on using neural networks
trained on 106 promoters and random sequences which were 60% A
rich and tested on 126 promoters for recognitiorEafoli promoters of
all spacing classes (15-21bp). This network showed 98% accuracy o
promoters and 90.2% accuracy on non-promoters (tested on 500 rando
generated sequences).

References




At last, Leunget al. (2001) presented ‘basic gene grammars and DNA- FESE:
ChartParser for language processindeafoli promoter DNA sequences  [iietliviey
approach’. The method was tested on 8)6oli promoters and 300 non-  EECEEUECEUE
promoter random sequences. Four experiments, performed using differe Rttt I
‘grammar rules’, have yielded the best prediction of 76% accuracy With ke
82% specificity and 69% sensitivity. Discussion

It should be noted that the set of kno®rcolic “Cpromotersthatwe used [t
both for training and test is the largest and includes the previously use
onesHorton and Kanehis@l 992 have noted the drop in prediction accu-
racy with larger training and/or test data sets. Taking into consideratio
the tendency observed, our sequence alignment kernel gives quite co
parable results. Moreover, in some of the experiments mentioned abo
random sequences were used as negative examples. We believe it is
quite fair, as they may differ too much from the actual genomic sequencey
The negative examples we are using are not only from the same genome
they are from non-coding regions, to avoid the distributional ‘hints’ of the
coding areas.

The future research would include reconstruction of other publishec
methods, then training and testing them on our expanded data set. Therg
also a direction we would like to undertake to assess the ‘trustworthinesg
of our predictions, by usingonfidenceandcredibility measures for each
individual prediction Gammerman and VoyR002).
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