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Abstract Abstract

Introduction

. . . .. . i . The Training Data
Motivation: Many protein—protein interactions are mediated by peptide G-

recognition modules (PRMs), compact domains that bind to short pep s

tides, and play a critical role in a wide array of biological processes. [
Recent experimental protein interaction data provide us with an OpportU- e
nity to examine whether we may explain, or even predict their interaction RS

by computational sequence analysis. Such a question was recently pos
by the use of random peptide screens to characterize the ligands of o
such PRM, the SH3 domain.

Results:We describe a general computational procedure for identifying
the ligand peptides of PRMs by combining protein sequence informatio
and observed physical interactions into a simple probabilistic model and
from it derive an interaction-mediated de novo motif-finding framework.
Using a recent all-versus-all yeast two-hybrid SH3 domain interaction
network, we demonstrate that our technique can be used to derive ind¢
pendent predictions of interactions mediated by SH3 domains. We sho
that only when sequence information is combined with such all versu
all protein interaction datasets, are we capable of identifying motifs with
sufficient sensitivity and specificity for predicting interactions. The algo-
rithm is general so that it may be applied to other PRM domains (e.g.
SH2, WW, PDZ).



Availability: The Netmotsa software and source code,

of a general Gibbs motif sampling
http://sf.net/projects/netmotsa

Contact: dreiss@systemsbiology.org

library,

are available at

as partpisies:
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1. Introduction Abstract

. . . . Introduction
Peptide recognition modules (PRMs) are typically found in the contextjss I

of larger multidomain signaling proteins or complexes. Their specific Jy_._:-
yet frequent binding events often direct the assembly and targeting O
protein complexes involved in a wide range of key cellular processe Jmmm.
(Zarrinparet al, 2003. They have therefore been implicated in a large NeRE
number of human diseases, from cancer and Alzheimer’s to Huntington S S
disease $udol and Hunter2000. The SH3 domain is among the most
numerous, and most actively studied and widely-understood PRMs f{q
date (Mayer, 200]). Many investigations, using high-resolution structure
determination, phage display, and combinatorial chemistry, have revealg
the preferred ligands of various specific SH3 domaBafnettiet al.,
200Q Kay et al., 200Q and references therein).

It has been found that the peptide ligands of many PRM domains, includ
ing SH3, consist of a proline-rich core. SH3 ligands in particular contain
a characteristid®xxP consensusx( signifies an arbitrary amino acid).
Upon further scrutiny, it is observed that the ligands may be classifieq
into two primary consensi, depending upon the orientation of the pep
tide’s binding to the surface of the domain: classHx@Px®P) and
class-Il @Px®Px+), where® is a hydrophobic residue, often leucine or
isoleucine;+ denotes a basic residue, most often arginine or asparagin
(Mayer, 2007). Still more detailed studies reveal that the specific affinity
for most individual SH3 modules may be ascribed to deviations in thei



individual ligand peptides from the standard core consensus, or to variJESEs
tions in additional important flanking residues. It has also been found thafilieErEEn
a few others do not conform to the consensus at all, probably relying upo ERIelyIpEE]
higher-order structure, or other factors such as cell localization or medi RS
ation by other protein interactions or contacts to modulate their affinity A=
(Mayer, 200]) Discussion
Tonget al.(2002 devised a strategy for examining interactions with SH3 |iitataitistie
domains on a large scale by combining genome-wide two-hybrid physica
interaction tests with the computational prediction of interactions using
motifs derived from phage display peptide screens. These two indepe
dently derived interaction networks could be compared to each other t
derive an ‘overlap network’, containing only the most significant interac-
tions. Moreover, by identifying the consensus target motifs for each SH
module, the technique provided a means of identifying the most likel
target regions (binding sites) on each SH3 interaction partner.
The work of Tong et al. (2002 lends itself naturally to the question
of whether the SH3 ligand peptides may also be found using one of th
de novomotif finding algorithms that have been developed over the pas
few years, most often for identifying putative transcription factor binding
sites in regulatory regions of co-expressed genes Bailey and Elkan
1994 Lawrenceet al,, 1993. This would provide the clear advantage of
allowing us to either specifically target, or perhaps even bypass altogethg
some of the difficult and expensive experimental techniques.
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The difficulty that arises in any such attempt is that one will not, in FESEe:
general, have more than a few interactions per domain. Restricting thBiEErEEn
analysis only to the very promiscuous domains would ignore a large fracjiiEaiciiyeleEe]
tion of the data. The problem is exacerbated because, as is known in t/EEEE
case of SH3 and several other domains, the consensus motif patterns JRSSES
rather poorly conserved and would require many examples in order to i
detected with any significance. Additionally, the two-hybrid network is [t
known to contain a large number of false positiveeiz and Hughes
2000 that will add noise to the training data. The problem is complicated
further because many other PRMs (e.g. WW, SH2, WH1) compete wit
SH3 to bind to proline-rich peptides; proline-rich motifs are therefore the
most common sequence motifs in many genordesr(nparet al,, 2003.
This is a classic example of trying to find relevant motifs in the ‘twilight
zone’ where the targets are likely to be too subtle, disparate or poorl
represented in small numbers to be identified using standard strategig
We argue below and demonstrate later that two such potential strategie
based on current motif-finding technologies, are poorly suited to handlg
this problem.

Strategy (A) would involve a search for a single motif in all identi-
fied SH3 binding partners in the two-hybrid interaction network. Such a
method quickly converges to a short11 residue) polyproline pattern
with small hints of higher order structure. Clearly, this result lacks the
specificity to identify anything but a broad consensus pattern which migh
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represent the ligand consensus. If we were to extend the search to moEESEs:
than one motif across the dataset, we would find it difficult to resolve eve rjlieEiEEn
the two primary consensus classes for SH3, because they are so similJEEERICTEsE
individual instances of the motifs deviate more from the consensus mode JAGIES
than the two class consensi differ from each other. Results

An alternate strategy (B) would be to search for a ligand motif patternjid
for each SH3 domain, in the sequences of the proteins that bind only to [ttt
This will be even more difficult in general because the signal in the smal
number of binding partners of each domaivd(on average, with as few
as 1), can be expected to be obscured by a typically large number of falg
positives in the interaction datd/étz and Hughe<2000.

The clear path is to choose a middle ground between strategies (A) a
(B). Whereas each SH3 module might not bind to a large enough numbe
of proteins to enable its consensus motif to be detected, the network g
overlapping sets of interaction partners suggests that there should be
complex pattern of differing levels of similarity between motif models of
the different SH3 ligands. This pattern can serve as an additional constrai
on the motif detection. In other words, we can choose a compromiss
strategy between the two methods described above, thereby enabling
to do better than either of the methods alone. We do this by using th
network information as a prior on the structure of individual motifs, which
we search for using a modified version of the Gibbs sampling algorith
described by.awrenceet al. (1993 andLiu et al. (1999.
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2. The Training Data Abstract

We use thélonget al. (2002 SH3 yeast two-hybrid interaction network nroducton

for our training set, although the techniques we develop are designed fro [ —_-—:—"

the offset to be easily generalizable to networks modulated by any typ g

or number of PRMs and identified by any experimental technique. ThiJgyms
network contains 285 interactions between 28 SH3 proteins and 143 SHE Rt
binding partners. Just as important, it is based on all versus all screen ERSSEIS
which each SH3 protein was tested against all other proteins in yeast. Eaq
SH3 module interacts with between 1 and 20 partners (averaé@ewith
a roughly flat degree distribution, and each interactor binds to an averag
of ~2 different SH3 proteins (with a steeply declining power-law degree
distribution typical of other observed biological networks).

The Training Data




3. MethOdS Abstract
3.1. The model Introduction

We approach this problem by constructing a probabilistic model descril .

ing the likelihood of generating the amino acid sequences of the bindin (=<
partners of each PRM domain in an interaction network, and then usin g .

a Gibbs sampling algorithm to solve for the parameters of the model. Wi o
begin with some definitions. Formally, we model the network as a sparsgSSres
matrix of edges, between a set of PRM domalihs; (dy,dp,...), and a
set of proteins with amino acid sequerige= (s1, S, ...). Sj is a vector
of residues of length.j where thek-th residue ins;j is sj k. The edges

The Training Data

define the non-zero entries in the matr,= (i j); i = 1,...,|D|;
j = 1,...,]S|, where each edge ; corresponds to a real probability
quantifying our belief in the interactiowr; ; = P(interaction j = true).

Because here we only consider an interaction network derived from a si
gle set of experiments, we usgj = 1 if there is an observed interaction
betweerd;, anddj; €,j = 0 otherwise.

Defining for any vectop, |v| = ), vi, each domaiul; is connected via
|E;| edges tgE;| target protein sequences;(= |¢j 1, . . . ,ei,|Ei||T), and
likewise each interactor sequerges connected byE. | edges tdE |
SH3 domainsK.j = |e1j,...,€E; ),jl). Where there is an interaction
€,j, a binding siteA = (a,j) marks the start of a peptide of length
in sj (residuessj g ;+1, - - -, Sj,a,;+w) that binds to domaiw;. Two sites



gj,j andag j in sj that interact with domains; anddy are considered Abstract
independent. Therefors; may have as many g&.j| distinct binding Introduction
sites, or as few as one. We may, however, add priors into our model if wElERIchyIpEE]
believe that the two sites should have a higher probability (than randomjiiucEs
of being the same. Results

The consensus binding pattern, or motif, for each dordais modeled Discussion
as a position-specific scoring matrix (PSSM). The PSBMe O is
comprised of av-length vector of independent multinomial distributions,
6i,j, giving the probability of observing each of thle=20 residues at
positionj in the motif.®; is therefore av x J matrixwhered_, 6 jk=1
forall j.

The residues isj that do not participate in any interactions (background
residues) are drawn from a common multinomial distributiég, We
generatedy, for this dataset, from the entire translated set of open reading
frames (ORFs) in th&accharomyces cerevisigenome KNCBI, 2002
ftp://ftp.ncbi.nih.gov/refseq Alternatively, if the dataset were larger and
it was expected that the individual motifs were distingj,could have
been generated from only the SH3 ligand sequences, or even separat(
for each domain. A higher order Markov process might also be considere
to generate the background distribution.

Acknowledgements
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Residues irsj where there is a binding event with domaljrat siteg; j, Abstract

.e. residues; aij+1r- - Sja j+ws are modeled by PSS : Introduction
The Training Data

w Methods
P(SJ ,ai,j+1’ e ,Sj ,ai,j+W|®i) = 1_[ 9i ’k’quk“Fai'j . (1) R.esults-
k=1 Discussion
Acknowledgements
The likelihood of sequencs; with binding eventsE.j to domainsD.j References

(with PSSMs®. ) at the corresponding binding sités; may then be
written as:

P(sj,E.j,A.j|0®.j,00)

Li—w |E.jl w QikS‘k_,_ €i,j
KiSj ktaj j
o« [T tos;y [] (]_[ —’) . 2)
=1

i=1 \k=1 90,5] ’k+aivj

We do not exclude the possibility of overlapping binding sites for different
domains (in fact, they may be common), and for the cadé stich over-

lapping binding sites, we utilize a mixture of PSSMs, replacing the single
motif models; k s; Kia with a mixture of the overlapping motif models,

offset by their corresponding binding Iocationgjr'\n"=l Qm9m,k,Sj,k+amj-

The mixture weightgm, with > gqm = 1, are determined by the structure
of the network, as described 8ection 3.2



3.2.

The likelihood of the complete data, given the parameters, is

E
P(SA,E®,00) =[] P(sj.Ej,Ajl0.},60). (3)
j=1

The main distinctions between our modebjuation (3) and that for the
common site samplet.@wrenceet al, 1993, which assumes one motif
instance per sequence [el§quation (1)in Liu et al. (1999] are that
here we are counting over interactions (through their likelihood) rathe
than over sequences, and utilizing mixtures of motif models for case
of multiple overlapping motifs. Other than these details, the resulting
conditional distributions which we use during the Gibbs sampling are
identical [sed.iu et al. (1999 for their derivation].

The motif prior

The Gibbs sampling algorithm enables us to sample over individual condi
tional probabilities, updating prior expectations to posterior distributions
and thereby sampling the joint likelihood. These conditional probability
distributions are derived blyiu et al. (1995:

W éi ’k’sjrk+ai,j
’ k=1 QO’SJ,kJrai,j

Abstract
Introduction

The Training Data
Methods

Results
Discussion
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where thed are the posterior means of, i.e. & o« [OP(6)do. Abstract
P@@,jlA, oL S, E) are the predictive update distributions aQqqu denotes Introduction
the set of all sites in all sequences other than(Liu et al, 1995. The Training Data

We define aw x J counting matrixC; ; for a chosen locatios; j in L"ee::‘l’t:s
sequencesj, asC; j k| =4(S; ,ai’j+k:I), and an alignment matrix over
all sites that bind ta} asCj =} _; «,jCi j, then we may use a mixture | EEGCNN_—
of Dirichlet distributions[Y", qxD(8i|Ci,ak)] as a conjugate prior on SR
the ®;. Then, we find tha®; o« Y, 0, D(O;|Ci + ak), where thewy
are ‘pseudocounts’, which may be thought of as additional observationg
added to the observed counBufbin et al, 1998. Now, in addition to
the Dirichlet mixture components &jolanderet al. (1996 that capture
chemical similarities between the residues, we can include further prio
information by adding additional pseudocounts to the observed alignme
counts.

Previous work on SH3Section ) and other PRMs suggests that the
binding peptides for most SH3 domains are similar. We capture thig
prior information by adding a global pseudocount componéht, =
i€ iCij-

We may specify a further prior that captures the local pattern of bind
ing that we see in the observed interaction netwiarkBy adding the
prior assumption that binding sites on ‘promiscuous’ proteins are likely,

Discussion




3.3.

to bind to many different domains [which is hinted at by the enzyme- Stk

linked immunosorbent assay (ELISA) experiments on Las17dryg Introduction

et al. (2002], we would expect that model®; for domains Dj €D.j) The Training Data
that bind to proteirs; should be similar. This means that tB¢ of those Methods
domains with a high degree of overlap in their binding partner sets woul (i

be more similar than those of two domains with distinct sets of part-jidd
ners. We incorporate this prior information iffg®; ) as an appropriately  [iittadtin
weighted set of pseudocounts that describes all alignment cou@ts:in

Cj= Zi €,iCij-

References

The discriminative prior

This model does not take full advantage of the fact that our rather uniqu
training data, having been generated from an all-versus-all two-hybric
screen, contains explicit information on a large number of interactiong
that do not occur. This negative interaction information tells us that a
putative binding site j in sequences;, that binds to SH3 domaidi,
must not only be (1) similar to the motif3.;, but it should also be (2)
distinct from aII@,jA, WhereD_jA ares;j’s non-binding domains. Point (1)
above is already included in the model as describéskiction 3.2Point

(2) may be incorporated into the model through judicious use of a non
uniform site-based prioP (g; j). This type of prior distribution may, in
general, be incorporated into our modEbuation (2), in the exponent,



with Equation (4xhen becoming Abstract

Q_ Introduction
i,K,Sj Kty The Training Data
PaijlA;y, S E) o P'@ ) [ [ — (5) -
k=1 "0 SN EIS
whereP’(& ) is the posterior mean distribution Bf(g; j). Typical Gibbs Discussion
samplers utilize a uniform prior, and th#(a; ;) = 1/(Li — w). We Acknowledgements
instead use a non-uniform pri6%(a j), described below. References

Such a prior should give higher probability to these sites that are disting
from the non-binding motif@‘f. This is a particularly difficult require-
ment, especially in the case of SH3 where all motifs ((ihfe as well as
the ®.j) are known to be similar in most cases. The ideal preference ma
be stated like this: if two sites equally match 1Bg, then the one that is
most dissimilar to th@.f should preferentially be chosen.

We implement this simple expectation as follows: when a newegite
is to be sampled froni (g ; |Ai;j , S, E) [Equation (4), we compute for
that sitepx = P(a;,j|©k) via Equation (1)for each®y € ©.j, and also
for each®y € @le. A comparison of these two sets of scorpg &nd
Pk’) against each other in which most of thg are greater than thgy
should produce a favorable probabiliBy(a;,j). The significance of a
Student’'s-test or Wilcoxon rank test may be used to do this comparison
(Siegel 2003. We find that the rank test works best in our case where theg
number of elements ipk is often small. In either case, the significance of



3.4.

the difference in distribution®q(a;,j) equals O for no distinction (when [EEEE

Pk < Pk’) or 1 whenpy is significantly greater thapy . Introduction
The strength of our discriminative prior (i.e. the amount by which this [RIRICIEEE

discrimination influences the choices of binding sites) may be adjusteqiiitEs

by adding a pseudocouqyg to the posterior distribution iEquation (5) Results

i.e. P{(ai,j) = a4 + Pa(a,j), and then renormalizing. A choice of O for R

g means that the discrimination (i.e. the result of the ranktest) will Acknowledgements

strongly influence our choice of a given site. Otherwise, a choice of, e.g

10 for gg means that this prior should account fe0% of the overall

decision to choose the site.

The algorithm

The Gibbs sampling approach allows us to sample the joint distributio
of our interaction modelgquation (3) by iterating over each interaction
(all €,j # 0) to choose the most probable valuedpy by sampling from

its conditional probability distribution when all remaining binding sites
are left fixed Equation (5). We start by choosing an initial (random) site
in sequences; for each of the binding events (edges in the two-hybrid
network; i j # 0), and proceed to iterate over the edges, choosing ¢
new binding siteg; j in s; by sampling fromEquation (5) after remov-
ing the previousy; j from C; j. The PSSM,@],,—, used to compute this
distribution is calculated, temporarily for each edge, from the alignment
countsC, using various pseudocounts derive&grction 3.2In particular,

6;,; is computed from a dirichlet mixture of the individual pseudocount

References



components described abo\@ (), added and appropriately weighted: — FUSiEH:

Introduction

Ci,j = ZGK,jCk,j + pOZ Zek,l Ck,l The Training Data
k k| Methods
Results
T plzel'kcl’k’ (6) Discussion
k Acknowledgements
Once a newg; j is chosen, the corresponding counting matix; is References

updated and the procedure repeated on a new interaction.

The influence of the network-based components of the m&egnd
C.j, onthe overall procedure are adjusted simply by scaling their mixture
coefficients, which we calig andqy, respectively. These tunable param-
eters represent the user’s degree of belief in the expectations, respective
that all motif models should be similar on a global scale (global similarity
of binding sites), and that the motif models for all SH3 domains that bind
to a particular sequence should be similar (local network-informed simi
larity of binding sites). They may be seen as parameters which influenc
the degree of over- or under-fitting of the model to the data. In practice
on the SH3 network, with a sufficiently high choice for (e.g. 10%),pqg
is not required, and we choogig = 0. Once a neva; j is chosen, the
corresponding counting matr®; j is updated and the procedure repeated
on a new interaction.

Following Lawrenceet al. (1993, we compute the maximum a pos-
teriori probability (MAP) estimate of the model given each sampled set




input: interaction network E, protein sequences S
for each ¢; ; € E: randomly choose binding site a; ; € A in sequence s; € S
repeat:
for each ¢; ; € E:
add up counting matrices C;, C.;, C, (§3.2), ignoring the current site a; ; (i.e. using only sites ai;j)
compute C; ; (Eq. (6)); add additional pseudocounts (Sjolander ef al., 1996)
compute PSSM 0; ; from Cj ; (§3.2)
compute the “discriminative posterior” Pj{a;, ;) (§3.3)
compute P(a;,j|A;;, S, E) (Eq. (5)) using ©, 5, 55, and Py(as ;)
sample a new site a; ; from P(ai,j|Ai;].7 S,E)
Compute a new MAP score given the newly sampled sites
Store the current parameters (A’, ©) if the MAP score is the largest yet seen
until a fixed number of iterations passes, or the best MAP score does not change for a fixed number of iterations
output: A’, ©'

Fig. 1. The network-based Gibbs sampling procedure.

of variables (including the priors), and use the highest scoring set that i
obtained during a repeated number of iterations of the sampling procedur
A simplified summary of the algorithm is describedFigure 1
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4. ReSUItS Abstract
4.1. Interaction prediction Introduction
. . The Training Data
Following Tong et al. (2002, we may estimate how well our computa-

Method
tionally identified SH3 ligand motifs can be used to predict, or confirm, e
physical interactions. We may write the likelihood of an arbitrary sequence

Results

Discussion
sj conditioned on the fact that it binds to SH3 domBinwith motif model Acknowledgements
O®; by integrating=quation (2pver all potential binding sites and applying RESIeS
Bayes’ rule:

P(ei,j = 1Isj, 60, Oj)

i,j — 1)
Iogﬂ[log(la(€I =0 ) l_[ 05sj k

Y Z P(aml_[ m)} 7)

where logitx) = (1 + e *)7L. P(¢,j = 1)/P(ei,j = 0) quantifies our
prior expectation that there is indeed an edge betvggamdd;. We use
the observed ratio of edges to non-edges in the SH3 two-hybrid interactio
network for this prior.

We can applyequation (7)for an arbitrary protein sequensg, using
our derived SH3 ligand mode®s; to compute:; j» = P(interaction j =




true) for that sequence. We can then compute a predicted interaction nejEBEiEe:
work asTonget al. (2002 did. For each predicted edge in our network, [eEiEy
we ensure that the models were not learned using the sequence(s) aRUGRICTIEEE
their corresponding interaction(s) being tested. Prior to computing Methods
we therefore cullj and its interaction&.j: from the dataset, and re- e
learn the model parameters from this subset of the data. Repeating thiisaasdd
procedure for all proteins in the two hybrid dataset allows us to construc/iiiiteiiis
a prediction network that is independent of the two-hybrid network. To
directly compare our results to thoseTaing et al. (2002, we choose a
P-value cut-off for selecting interactions so that our network has the sam
number (394) of edges as their predicted netwéig.(2).
The predicted network reveals a highly connected core complex centere
on Lasl17, similar to the complex identifiedionget al.(2002. The pre-
dictions of Tonget al. (2002, computed with ligand motifs obtained via
phage display screens, resulted in a network of 394 interactions amo
206 proteins, of which 59 also existed in the two-hybrid network (expected
overlap of<1). We find consistently that our algorithm, withRavalue
cut-off chosen to result in-400 interactions, identifies50 interactions
that overlap the two-hybrid network, for arange of the various user-tunabils
parameters (e.gfg, g1 andqgq). This number is only slightly smaller
than the overlap offonget al. (2002, a fact, which might be surpris-
ing considering that our training (and comparison) interaction dataset i
based solely upon considerably noisy two-hybrid measureméats and

References
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Fig. 2. Predicted ) and overlapl§) SH3 interaction networks. Proteins containing SH3 domains are
drawn as dark ovals; other interactors are light rectangles.

Hughes 2000. An example of such an ‘overlap network’ (between our
computationally predicted network and the two-hybrid network) is shown
in Figure . It is apparent that the overlap network is also dominated b
the core complex of SH3 domain proteins.

Interestingly, our predicted network does not overlap tfeng et al,
2002 predicted network by significantly more than it does with the
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(400)
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Discussion
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Computational
(400)

Fig. 3. Size of intersection between our computationally predicted network and the two networks
(two-hybrid and predicted based upon phage displaypof et al. (2002.

observed (two-hybrid) network. The typical amount of intersection among
the three networks is shown Kigure 3 whereas only~17% of each of
the three networks intersect each other independently, about two-thirds (
each overlap network agrees. This network-@5 interactions may per-
haps be considered a truly high-confidence ‘core network’, which agree
among the three independent techniques.




4.2.

To assess how well our algorithm performs relative to the two simplerEsigEt:
algorithms (A) and (B) described near the endSefction 2 we ran the Introduction
same procedure described above, using technique (A), with (1) a standajiERiciylEE]
Gibbs site sampler and (2) MEMB@&iley and Elkan1994), and strategy Methods
(B) also with (1) the Gibbs sampler and (2) MEME. We found that the ga=tle
size of the ‘overlap network’ was consistently larger using our algorithm [
than it was for any of these four experimenps€ 10719). These results it
are summarized in column 2 d&ble 1

Furthermore, we computed the rate of true positives against the rat
of false positives (as measured against the two-hybrid network) over
wide range of predicted network sizes, to derive an receiver operatin
characteristic (ROC) curve. The area under the curve, for which a valu
of 0.5 represents no correlation at all, and 1.0 implies full correlation, wag
preferentially higher using our algorithm than it was for the four test caseg
described abovep(< 10~4; Table 1, column 3).

Binding peptide consensus identification

We display a sample of the ligand motifs for each SH3 domain,
identified by this algorithm, as motif logo$S¢hneider and Stephens
199Q http://www.lecb.ncifcrf.gov/~toms/paper/logopapem Figure 4

Clearly, the algorithm converges on proline-rich peptides (many eve
seemingly PxxP-like), even for domains in which there are very few inter-
actions. We also see common SH3-binding residues, such as leucin
arginine and othersSection ), often in their expected flanking positions

References
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Table 1. Comparison of the results of our algorithm (row 5) Abstract
against the two algorithms (A) and (B) describedSaction 1 Introduction
using a Gibbs sampler (1) and MEME (2).

The Training Data

Algorithm Overlap interactions ROC integral Motif match scores Methods

Al 40+ 3.1 0.76£0.010 0.47+£0.06 Results

A 2 27+2.7 0.66+0.011 0.41+0.04 . ]

B, 1 41+2.9 0.77£0.008 0.41+0.05 Discussion

B,2 35+16 0.72+0.013  0.42+0.03 Acknowledgements
Our algorithm 49+ 2.7 0.79+£0.008 0.55+ 0.08

References

See text $ections 4..and4.2) for an explanation of the three columns.

surrounding or within the proline-rich core. However, polyproline strings
clearly dominate the signal, and reveal a clear detriment of our techniqug
The same feature of the algorithm that directs the sampler to converg
on proline-rich peptides also serves to weakens the effect of any highg
order signal in the individual motifs. This is a classic example of trying
to find the best compromise between over- and under-fitting the model t
the available (noisy) data.

We computed how similar our computationally derived consensus bind
ing motifs (such as those displayedHiy. 4) are to those computed from
the phage display experimentsTdnget al. (2002 (their table 2). This
was done by generating a set of PSSMs from their consensi, and computi
the Pearson correlation coefficients of those PSSMs with our computa
tionally derived motifs Pietrokovskj 1996. This measurement, which
lies in the rangg—1, 1], was often higher for the consensi derived from
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4.3.

our algorithm than it was using any of the four methods identified abovegBEies

(p 5 10_3; Table 1, column 3). Introduction
The Training Data

Binding site prediction Methods
The likelihood of an interaction with an arbitrary binding ség;j, in Results
sequencs; (i.e. the binding occurs with residusgg, ;+1, - - -, Sj.a j+w) Discussion

can be derived analogously Emjuation (7) and results in Acknowledgements

References

Pei,j =11&,j,Sj,a +1 - Sja +ws 00, Oi)

C w Qi, Sikoar
- Iogit[log(P(e"J =D I1 “Sikta, )} 8)

P(ej = 0) k1 90,k,Sj k48 |

The ratiopsie = P(€i,j = 1)/P(ei,j = 0) is a site-based prior, describ-
ing our expectation that any site & is indeed a binding site, given that
an interaction does occur somewhere in the sequence. Where we have
prior expectation ohgjie binding sites per interaction, we use a uniform
prior distribution psie = Nsite/(Lj — w), With nsiie = 1. This allows

us, for a given domai; and interactor sequensg in which we pre-
dict P(ei,j) = 1 via Equation (7) to identify putative binding sites up
to a certain probability cut-off. We have chosen to perform this computa
tional analysis on the protein Las17, whose binding sites with various SH
domains were also determined experimentally (via ELISA experiments
by Tonget al. (2002.



A comparison of the most likely predicted binding sites on Las17 with its [ESEe:
various predicted interactors based ugoguation (8shows thatwe donot Iy
have the sufficient specificity to accurately predict binding sites using ou JREERIEUIIEE
probabilistic modelp = 0.69). Whenwe performed the identical analysis [RaEEs
using the phage display-derived motifSlohgetal.(2009 we see asome- e
what more significant ability to predict binding siteg & 0.28). Even Discussion

Acknowledgements

this result seems to be at odds with the analysis performed in the paps
in which only one of 15 binding sites were incorrectly predicted. Such a
disparity reveals one of the weaknesses of our model with regard to SH
we use only one consensus for each domain (as opposed to two, which t
phage display experiments are capable of resolving). Further, our co
bined model results in the blurring of the individually specific motifs,
which seems to diminish the specific resolving power of the motifs in pre
dicting individual binding sites. It should also be pointed out, however,
that the particular ELISA experiments performedTmyng et al. (2002

on Lasl17 are subjected to some of the same potential systematic effeqg
the phage display experiments are, which could be artificially enhancing
the agreement between the two experimental methods in their work.
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5. DiSCUSSiOI’] Abstract

Introduction

There have been several attempts to predict the ligands of SH3 and oth
PRM domains in the recent past, using methods, such as profile sca G-
ning (Obenaueet al, 2003, neural networks@hang and Page002 Results
and structural modelsBfannettiet al., 2000, with varying degree of Discussion
success. All these techniques are specific to the particular system that [
being investigated. We have described a method for identifying such lig B Eres
ands using only sequence and high-throughput interaction data, witho
requiring any additional prior assumptions on the system, or any type o
structural information. We have shown that our technique is capable o
characterizing the peptides that bind to sets of SH3 domains and therel
predicting which proteins these domains will interact with, nearly as accu
rately as the motifs derived from phage display experiments. However, o
technique is not able to correctly identify the individual binding sites that
the domains bind to.
There is clearly information that plays an important role in this sys-
tem, that we are not including in our statistical model. As a simple
example, additional prior information on the selection of interaction siteg
aj j, €.g. based on modeled or observed three-dimensional structurs
(such as residue burial predictions), or other sequence-based prior kno
edge, may be incorporated into the model as a non-uniform priay j )
(Section 3.3 More intelligent choices of motif priorsSection 3.2, such
as inclusion of the PxxP signature, or some sort of discrimination betwee

The Training Data



class-1 and class-1l motifs, would also probably help, although it would BEiEs
result in a loss of generality of the technique to other systems. We hav gl
also ignored the structure or sequence of the SH3 domains completely, ajuERiciylpEE]
perhaps this is the ultimate limitation of our technique. Such informationiiis
could potentially be included into the model, in a variety of ways (many [k
of which, again, could result in loss of generality). Discussion
While we have tried to keep the algorithm as general as possible, the jiitciiia
remain three user-tunable parametes €1, andgg) that must be chosen
for each training interaction data set. As with many algorithms, choosing
the appropriate combination of parameters would be more of an art tha
a science, and if one were to apply this algorithm to a different datase
choosing inappropriate parameters will result only in the effectiveness o
the algorithmfalling back to those of the standard Gibbs sampler or MEME
(Table 1. In such a case, a good place to start would be to compare th
target interaction network with that which we have used in this paper. Fo
example, for a more loosely connected graph or one in which the motify
are expected to be more similar, one would incresand decrease;
andqg; and vice versa for a more tightly connected graph or one in which
the motifs are expected to be dissimilar.
We have only tested our algorithm on the system of interacting SH
domains in yeast, but it could potentially be used in the analysis of othe
PRM domains, such as WW, SH2, PDZ and Vasp, or in other species
once the results of any similar all versus all interaction screens becom

References



available. We believe that a major limitation on the performance of thejEiEe:
algorithm lies in the quality of the interaction data that it is trained on. QeI
Reducing the false positive rate of the training data by incorporatinEiERICUIeEE
positive (and negative, where available) interactions derived from lowe JEaEEs
throughput techniques can be expected to increase the predictive pow i
of our method. Discussion
Finally, we believe we have developed a framework that is general an (il
flexible enough that it could, with few modifications, be applied to com- [t
pletely new systems of interactions between various biomolecules. Sug
potential targets of this analysis could include other domain—peptide inte
action systems (e.g. immune response interactions) and protein—DN
interaction setsl(eeet al., 2002.
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