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Abstract

Motivation: Many protein–protein interactions are mediated by peptide
recognition modules (PRMs), compact domains that bind to short pep-
tides, and play a critical role in a wide array of biological processes.
Recent experimental protein interaction data provide us with an opportu-
nity to examine whether we may explain, or even predict their interactions
by computational sequence analysis. Such a question was recently posed
by the use of random peptide screens to characterize the ligands of one
such PRM, the SH3 domain.

Results:We describe a general computational procedure for identifying
the ligand peptides of PRMs by combining protein sequence information
and observed physical interactions into a simple probabilistic model and
from it derive an interaction-mediated de novo motif-finding framework.
Using a recent all-versus-all yeast two-hybrid SH3 domain interaction
network, we demonstrate that our technique can be used to derive inde-
pendent predictions of interactions mediated by SH3 domains. We show
that only when sequence information is combined with such all versus
all protein interaction datasets, are we capable of identifying motifs with
sufficient sensitivity and specificity for predicting interactions. The algo-
rithm is general so that it may be applied to other PRM domains (e.g.
SH2, WW, PDZ).
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Availability: The Netmotsa software and source code, as part
of a general Gibbs motif sampling library, are available at
http://sf.net/projects/netmotsa

Contact:dreiss@systemsbiology.org

http://sf.net/projects/netmotsa
mailto: dreiss@systemsbiology.org
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1. Introduction
Peptide recognition modules (PRMs) are typically found in the context
of larger multidomain signaling proteins or complexes. Their specific
yet frequent binding events often direct the assembly and targeting of
protein complexes involved in a wide range of key cellular processes
(Zarrinparet al., 2003). They have therefore been implicated in a large
number of human diseases, from cancer and Alzheimer’s to Huntington’s
disease (Sudol and Hunter, 2000). The SH3 domain is among the most
numerous, and most actively studied and widely-understood PRMs to
date (Mayer, 2001). Many investigations, using high-resolution structure
determination, phage display, and combinatorial chemistry, have revealed
the preferred ligands of various specific SH3 domains (Brannettiet al.,
2000; Kay et al., 2000, and references therein).

It has been found that the peptide ligands of many PRM domains, includ-
ing SH3, consist of a proline-rich core. SH3 ligands in particular contain
a characteristicPxxP consensus (x signifies an arbitrary amino acid).
Upon further scrutiny, it is observed that the ligands may be classified
into two primary consensi, depending upon the orientation of the pep-
tide’s binding to the surface of the domain: class-I (+x8Px8P) and
class-II (8Px8Px+), where8 is a hydrophobic residue, often leucine or
isoleucine;+ denotes a basic residue, most often arginine or asparagine
(Mayer, 2001). Still more detailed studies reveal that the specific affinity
for most individual SH3 modules may be ascribed to deviations in their
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individual ligand peptides from the standard core consensus, or to varia-
tions in additional important flanking residues. It has also been found that
a few others do not conform to the consensus at all, probably relying upon
higher-order structure, or other factors such as cell localization or medi-
ation by other protein interactions or contacts to modulate their affinity
(Mayer, 2001).

Tonget al.(2002) devised a strategy for examining interactions with SH3
domains on a large scale by combining genome-wide two-hybrid physical
interaction tests with the computational prediction of interactions using
motifs derived from phage display peptide screens. These two indepen-
dently derived interaction networks could be compared to each other to
derive an ‘overlap network’, containing only the most significant interac-
tions. Moreover, by identifying the consensus target motifs for each SH3
module, the technique provided a means of identifying the most likely
target regions (binding sites) on each SH3 interaction partner.

The work of Tong et al. (2002) lends itself naturally to the question
of whether the SH3 ligand peptides may also be found using one of the
de novomotif finding algorithms that have been developed over the past
few years, most often for identifying putative transcription factor binding
sites in regulatory regions of co-expressed genes (e.g.Bailey and Elkan,
1994; Lawrenceet al., 1993). This would provide the clear advantage of
allowing us to either specifically target, or perhaps even bypass altogether,
some of the difficult and expensive experimental techniques.
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The difficulty that arises in any such attempt is that one will not, in
general, have more than a few interactions per domain. Restricting the
analysis only to the very promiscuous domains would ignore a large frac-
tion of the data. The problem is exacerbated because, as is known in the
case of SH3 and several other domains, the consensus motif patterns are
rather poorly conserved and would require many examples in order to be
detected with any significance. Additionally, the two-hybrid network is
known to contain a large number of false positives (Uetz and Hughes,
2000) that will add noise to the training data. The problem is complicated
further because many other PRMs (e.g. WW, SH2, WH1) compete with
SH3 to bind to proline-rich peptides; proline-rich motifs are therefore the
most common sequence motifs in many genomes (Zarrinparet al., 2003).
This is a classic example of trying to find relevant motifs in the ‘twilight
zone’ where the targets are likely to be too subtle, disparate or poorly
represented in small numbers to be identified using standard strategies.
We argue below and demonstrate later that two such potential strategies,
based on current motif-finding technologies, are poorly suited to handle
this problem.

Strategy (A) would involve a search for a single motif in all identi-
fied SH3 binding partners in the two-hybrid interaction network. Such a
method quickly converges to a short (∼11 residue) polyproline pattern
with small hints of higher order structure. Clearly, this result lacks the
specificity to identify anything but a broad consensus pattern which might
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represent the ligand consensus. If we were to extend the search to more
than one motif across the dataset, we would find it difficult to resolve even
the two primary consensus classes for SH3, because they are so similar;
individual instances of the motifs deviate more from the consensus models
than the two class consensi differ from each other.

An alternate strategy (B) would be to search for a ligand motif pattern
for each SH3 domain, in the sequences of the proteins that bind only to it.
This will be even more difficult in general because the signal in the small
number of binding partners of each domain (∼9 on average, with as few
as 1), can be expected to be obscured by a typically large number of false
positives in the interaction data (Uetz and Hughes, 2000).

The clear path is to choose a middle ground between strategies (A) and
(B). Whereas each SH3 module might not bind to a large enough number
of proteins to enable its consensus motif to be detected, the network of
overlapping sets of interaction partners suggests that there should be a
complex pattern of differing levels of similarity between motif models of
the different SH3 ligands. This pattern can serve as an additional constraint
on the motif detection. In other words, we can choose a compromise
strategy between the two methods described above, thereby enabling us
to do better than either of the methods alone. We do this by using the
network information as a prior on the structure of individual motifs, which
we search for using a modified version of the Gibbs sampling algorithm
described byLawrenceet al. (1993) andLiu et al. (1995).
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2. The Training Data
We use theTonget al. (2002) SH3 yeast two-hybrid interaction network
for our training set, although the techniques we develop are designed from
the offset to be easily generalizable to networks modulated by any type
or number of PRMs and identified by any experimental technique. This
network contains 285 interactions between 28 SH3 proteins and 143 SH3
binding partners. Just as important, it is based on all versus all screen in
which each SH3 protein was tested against all other proteins in yeast. Each
SH3 module interacts with between 1 and 20 partners (average∼ 9) with
a roughly flat degree distribution, and each interactor binds to an average
of ∼2 different SH3 proteins (with a steeply declining power-law degree
distribution typical of other observed biological networks).
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3. Methods
3.1. The model

We approach this problem by constructing a probabilistic model describ-
ing the likelihood of generating the amino acid sequences of the binding
partners of each PRM domain in an interaction network, and then using
a Gibbs sampling algorithm to solve for the parameters of the model. We
begin with some definitions. Formally, we model the network as a sparse
matrix of edges, between a set of PRM domains,D = (d1,d2, . . .), and a
set of proteins with amino acid sequenceS = (s1,s2, . . .). sj is a vector
of residues of lengthL j where thek-th residue insj is sj ,k. The edges
define the non-zero entries in the matrix,E = (εi , j ); i = 1, . . . , |D|;
j = 1, . . . , |S|, where each edgeεi , j corresponds to a real probability
quantifying our belief in the interaction:εi , j = P(interactioni , j = true).
Because here we only consider an interaction network derived from a sin-
gle set of experiments, we useεi , j = 1 if there is an observed interaction
betweendi , andd j ; εi , j = 0 otherwise.

Defining for any vectorEv, |Ev| ≡
∑

i vi , each domaindi is connected via
|Ei | edges to|Ei | target protein sequences (Ei = |εi ,1, . . . , εi ,|Ei ||

T ), and
likewise each interactor sequencesj is connected by|E· j | edges to|E· j |

SH3 domains (E· j = |ε1, j , . . . , ε|E· j |, j |). Where there is an interaction
εi , j , a binding siteA = (ai , j ) marks the start of a peptide of lengthw
in sj (residuessj ,ai , j +1, . . . ,sj ,ai , j +w) that binds to domaindi . Two sites
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ai , j andak, j in sj that interact with domainsdi anddk are considered
independent. Therefore,sj may have as many as|E· j | distinct binding
sites, or as few as one. We may, however, add priors into our model if we
believe that the two sites should have a higher probability (than random)
of being the same.

The consensus binding pattern, or motif, for each domaindi is modeled
as a position-specific scoring matrix (PSSM). The PSSM2i ∈ 2 is
comprised of aw-length vector of independent multinomial distributions,
θi , j , giving the probability of observing each of theJ = 20 residues at
position j in the motif.2i is therefore aw × J matrix where

∑
k θi , j ,k = 1

for all j .
The residues insj that do not participate in any interactions (background

residues) are drawn from a common multinomial distribution,θ0. We
generatedθ0, for this dataset, from the entire translated set of open reading
frames (ORFs) in theSaccharomyces cerevisiaegenome (NCBI, 2002,
ftp://ftp.ncbi.nih.gov/refseq). Alternatively, if the dataset were larger and
it was expected that the individual motifs were distinct,θ0 could have
been generated from only the SH3 ligand sequences, or even separately
for each domain. A higher order Markov process might also be considered
to generate the background distribution.

ftp://ftp.ncbi.nih.gov/refseq
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Residues insj where there is a binding event with domaindi at siteai , j ,
i.e. residuessj ,ai , j +1, . . . ,sj ,ai , j +w, are modeled by PSSM2i :

P(sj ,ai , j +1, . . . ,sj ,ai , j +w|2i ) =

w∏
k=1

θi ,k,sj ,k+ai , j
. (1)

The likelihood of sequencesj with binding eventsE· j to domainsD· j
(with PSSMs2· j ) at the corresponding binding sitesA· j may then be
written as:

P(sj ,E· j ,A· j |2· j , θ0)

∝

L j −w∏
l=1

θ0,sj ,l

|E· j |∏
i =1

(
w∏

k=1

θi ,k,sj ,k+ai , j

θ0,sj ,k+ai , j

)εi , j

. (2)

We do not exclude the possibility of overlapping binding sites for different
domains (in fact, they may be common), and for the case ofM such over-
lapping binding sites, we utilize a mixture of PSSMs, replacing the single
motif modelθi ,k,sj ,k+ai , j

with a mixture of the overlapping motif models,

offset by their corresponding binding locations:
∑M

m=1 qmθm,k,sj ,k+am, j
.

The mixture weightsqm, with
∑

m qm = 1, are determined by the structure
of the network, as described inSection 3.2.
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The likelihood of the complete data, given the parameters, is

P(S,A,E|2, θ0) =

|S|∏
j =1

P(sj ,E· j ,A· j |2· j , θ0). (3)

The main distinctions between our model [Equation (3)] and that for the
common site sampler (Lawrenceet al., 1993), which assumes one motif
instance per sequence [e.g.Equation (1)in Liu et al. (1995)] are that
here we are counting over interactions (through their likelihood) rather
than over sequences, and utilizing mixtures of motif models for cases
of multiple overlapping motifs. Other than these details, the resulting
conditional distributions which we use during the Gibbs sampling are
identical [seeLiu et al. (1995) for their derivation].

3.2. The motif prior

The Gibbs sampling algorithm enables us to sample over individual condi-
tional probabilities, updating prior expectations to posterior distributions
and thereby sampling the joint likelihood. These conditional probability
distributions are derived byLiu et al. (1995):

P(ai , j |A ˆi , j ,S,E) ∝

W∏
k=1

θ̄i ,k,sj ,k+ai , j

θ̄0,sj ,k+ai , j

, (4)
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where the θ̄ are the posterior means ofθ , i.e. θ̄ ∝
∫

θ P(θ)dθ .
P(ai , j |A ˆi , j ,S,E) are the predictive update distributions andA ˆi , j denotes
the set of all sites in all sequences other thanai , j (Liu et al., 1995).

We define aw × J counting matrixCi , j for a chosen locationai , j in
sequencesj , asCi , j ,k,l = δ(sj ,ai , j +k = l ), and an alignment matrix over
all sites that bind todi asCi =

∑
j εi , j Ci , j , then we may use a mixture

of Dirichlet distributions
[∑

k qkD(2i |Ci , Eαk)
]

as a conjugate prior on
the 2i . Then, we find that2̄i ∝

∑
k q′

kD(2i |Ci + Eαk), where theEαk
are ‘pseudocounts’, which may be thought of as additional observations,
added to the observed counts (Durbin et al., 1998). Now, in addition to
the Dirichlet mixture components ofSjolanderet al. (1996) that capture
chemical similarities between the residues, we can include further prior
information by adding additional pseudocounts to the observed alignment
counts.

Previous work on SH3 (Section 1) and other PRMs suggests that the
binding peptides for most SH3 domains are similar. We capture this
prior information by adding a global pseudocount component,Cg =∑

i , j εi , j Ci , j .
We may specify a further prior that captures the local pattern of bind-

ing that we see in the observed interaction networkE. By adding the
prior assumption that binding sites on ‘promiscuous’ proteins are likely
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to bind to many different domains [which is hinted at by the enzyme-
linked immunosorbent assay (ELISA) experiments on Las17 byTong
et al. (2002)], we would expect that models2i for domains (Di ∈ D· j )
that bind to proteinsj should be similar. This means that the2i of those
domains with a high degree of overlap in their binding partner sets would
be more similar than those of two domains with distinct sets of part-
ners. We incorporate this prior information intoP(2i ) as an appropriately
weighted set of pseudocounts that describes all alignment counts inC· j :
C· j =

∑
i εi , j Ci , j .

3.3. The discriminative prior

This model does not take full advantage of the fact that our rather unique
training data, having been generated from an all-versus-all two-hybrid
screen, contains explicit information on a large number of interactions
that do not occur. This negative interaction information tells us that a
putative binding siteai , j in sequencesj , that binds to SH3 domaindi ,
must not only be (1) similar to the motifs2· j , but it should also be (2)
distinct from all2

· ĵ , whereD
· ĵ aresj ’s non-binding domains. Point (1)

above is already included in the model as described inSection 3.2. Point
(2) may be incorporated into the model through judicious use of a non-
uniform site-based priorP(ai , j ). This type of prior distribution may, in
general, be incorporated into our model [Equation (2)], in the exponent,
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with Equation (4)then becoming

P(ai , j |A ˆi , j ,S,E) ∝ P′(ai , j )

W∏
k=1

θ̄i ,k,sj ,k+ai , j

θ̄0,sj ,k+ai , j

, (5)

whereP′(ai , j ) is the posterior mean distribution ofP(ai , j ). Typical Gibbs
samplers utilize a uniform prior, and thusP′(ai , j ) = 1/(L i − w). We
instead use a non-uniform priorPd(ai , j ), described below.

Such a prior should give higher probability to these sites that are distinct
from the non-binding motifs2

· ĵ . This is a particularly difficult require-
ment, especially in the case of SH3 where all motifs (the2

· ĵ as well as
the2· j ) are known to be similar in most cases. The ideal preference may
be stated like this: if two sites equally match the2· j , then the one that is
most dissimilar to the2

· ĵ should preferentially be chosen.
We implement this simple expectation as follows: when a new siteai , j

is to be sampled fromP(ai , j |A ˆi , j ,S,E) [Equation (4)], we compute for
that sitepk = P(ai , j |2k) via Equation (1)for each2k ∈ 2· j , and also
for each2k′ ∈ 2

· ĵ . A comparison of these two sets of scores (pk and
pk′) against each other in which most of thepk are greater than thepk′

should produce a favorable probabilityPd(ai , j ). The significance of a
Student’st-test or Wilcoxon rank test may be used to do this comparison
(Siegel, 2003). We find that the rank test works best in our case where the
number of elements inpk is often small. In either case, the significance of
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the difference in distributionsPd(ai , j ) equals 0 for no distinction (when
p̄k ≤ p̄k′) or 1 whenp̄k is significantly greater than̄pk′.

The strength of our discriminative prior (i.e. the amount by which this
discrimination influences the choices of binding sites) may be adjusted
by adding a pseudocountqd to the posterior distribution inEquation (5),
i.e. P′

d(ai , j ) = qd + Pd(ai , j ), and then renormalizing. A choice of 0 for
qd means that the discrimination (i.e. the result of the rank ort-test) will
strongly influence our choice of a given site. Otherwise, a choice of, e.g.
10 for qd means that this prior should account for∼10% of the overall
decision to choose the site.

3.4. The algorithm

The Gibbs sampling approach allows us to sample the joint distribution
of our interaction model [Equation (3)] by iterating over each interaction
(all εi , j 6= 0) to choose the most probable value forai , j by sampling from
its conditional probability distribution when all remaining binding sites
are left fixed [Equation (5)]. We start by choosing an initial (random) site
in sequencesj for each of the binding events (edges in the two-hybrid
network; εi , j 6= 0), and proceed to iterate over the edges, choosing a
new binding siteai , j in sj by sampling fromEquation (5), after remov-
ing the previousai , j from Ci , j . The PSSM,θ̄i , j , used to compute this
distribution is calculated, temporarily for each edge, from the alignment
countsC, using various pseudocounts derived inSection 3.2. In particular,
θ̄i , j is computed from a dirichlet mixture of the individual pseudocount
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components described above (Ci , j ), added and appropriately weighted:

Ci , j =

∑
k

εk, j Ck, j + p0

∑
k

∑
l

εk,l Ck, l

+ p1

∑
k

εi ,kCi ,k, (6)

Once a newai , j is chosen, the corresponding counting matrixCi , j is
updated and the procedure repeated on a new interaction.

The influence of the network-based components of the model,Cg and
C· j , on the overall procedure are adjusted simply by scaling their mixture
coefficients, which we callqg andq1, respectively. These tunable param-
eters represent the user’s degree of belief in the expectations, respectively,
that all motif models should be similar on a global scale (global similarity
of binding sites), and that the motif models for all SH3 domains that bind
to a particular sequence should be similar (local network-informed simi-
larity of binding sites). They may be seen as parameters which influence
the degree of over- or under-fitting of the model to the data. In practice
on the SH3 network, with a sufficiently high choice forp1 (e.g. 10%),pg
is not required, and we choosepg = 0. Once a newai , j is chosen, the
corresponding counting matrixCi , j is updated and the procedure repeated
on a new interaction.

Following Lawrenceet al. (1993), we compute the maximum a pos-
teriori probability (MAP) estimate of the model given each sampled set
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Fig. 1. The network-based Gibbs sampling procedure.

of variables (including the priors), and use the highest scoring set that is
obtained during a repeated number of iterations of the sampling procedure.
A simplified summary of the algorithm is described inFigure 1.
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4. Results
4.1. Interaction prediction

Following Tong et al. (2002), we may estimate how well our computa-
tionally identified SH3 ligand motifs can be used to predict, or confirm,
physical interactions. We may write the likelihood of an arbitrary sequence
sj conditioned on the fact that it binds to SH3 domainDi with motif model
2i by integratingEquation (2)over all potential binding sites and applying
Bayes’ rule:

P(εi , j = 1|sj , θ0,2i )

= logit

[
log

(
P(εi , j = 1)

P(εi , j = 0)

L j∏
k=1

θ0,sj ,k

×

L j−W∑
l=1

P(ai , j )

W∏
m=1

θi ,m,sj ,l+m

θ0,sj ,l+m

)]
, (7)

where logit(x) ≡ (1 + e−x)−1. P(εi , j = 1)/P(εi , j = 0) quantifies our
prior expectation that there is indeed an edge betweensj anddi . We use
the observed ratio of edges to non-edges in the SH3 two-hybrid interaction
network for this prior.

We can applyEquation (7)for an arbitrary protein sequencesj ′, using
our derived SH3 ligand models2i to computeεi , j ′ = P(interactioni , j ′ =
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true) for that sequence. We can then compute a predicted interaction net-
work asTonget al. (2002) did. For each predicted edge in our network,
we ensure that the models were not learned using the sequence(s) and
their corresponding interaction(s) being tested. Prior to computingεi , j ′,
we therefore cullsj ′ and its interactionsE· j ′ from the dataset, and re-
learn the model parameters from this subset of the data. Repeating this
procedure for all proteins in the two hybrid dataset allows us to construct
a prediction network that is independent of the two-hybrid network. To
directly compare our results to those ofTonget al. (2002), we choose a
P-value cut-off for selecting interactions so that our network has the same
number (394) of edges as their predicted network (Fig. 2).

The predicted network reveals a highly connected core complex centered
on Las17, similar to the complex identified inTonget al.(2002). The pre-
dictions ofTonget al. (2002), computed with ligand motifs obtained via
phage display screens, resulted in a network of 394 interactions among
206 proteins, of which 59 also existed in the two-hybrid network (expected
overlap of<1). We find consistently that our algorithm, with aP-value
cut-off chosen to result in∼400 interactions, identifies∼50 interactions
that overlap the two-hybrid network, for a range of the various user-tunable
parameters (e.g.qg, q1 and qd). This number is only slightly smaller
than the overlap ofTong et al. (2002), a fact, which might be surpris-
ing considering that our training (and comparison) interaction dataset is
based solely upon considerably noisy two-hybrid measurements (Uetz and
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Fig. 2. Predicted (a) and overlap (b) SH3 interaction networks. Proteins containing SH3 domains are
drawn as dark ovals; other interactors are light rectangles.

Hughes, 2000). An example of such an ‘overlap network’ (between our
computationally predicted network and the two-hybrid network) is shown
in Figure 2b. It is apparent that the overlap network is also dominated by
the core complex of SH3 domain proteins.

Interestingly, our predicted network does not overlap the (Tong et al.,
2002) predicted network by significantly more than it does with the
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Fig. 3. Size of intersection between our computationally predicted network and the two networks
(two-hybrid and predicted based upon phage display) ofTonget al. (2002).

observed (two-hybrid) network. The typical amount of intersection among
the three networks is shown inFigure 3; whereas only∼17% of each of
the three networks intersect each other independently, about two-thirds of
each overlap network agrees. This network of∼35 interactions may per-
haps be considered a truly high-confidence ‘core network’, which agrees
among the three independent techniques.
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To assess how well our algorithm performs relative to the two simpler
algorithms (A) and (B) described near the end ofSection 2, we ran the
same procedure described above, using technique (A), with (1) a standard
Gibbs site sampler and (2) MEME (Bailey and Elkan, 1994), and strategy
(B) also with (1) the Gibbs sampler and (2) MEME. We found that the
size of the ‘overlap network’ was consistently larger using our algorithm
than it was for any of these four experiments (p . 10−10). These results
are summarized in column 2 ofTable 1.

Furthermore, we computed the rate of true positives against the rate
of false positives (as measured against the two-hybrid network) over a
wide range of predicted network sizes, to derive an receiver operating
characteristic (ROC) curve. The area under the curve, for which a value
of 0.5 represents no correlation at all, and 1.0 implies full correlation, was
preferentially higher using our algorithm than it was for the four test cases
described above (p . 10−4; Table 1, column 3).

4.2. Binding peptide consensus identification

We display a sample of the ligand motifs for each SH3 domain,
identified by this algorithm, as motif logos (Schneider and Stephens,
1990, http://www.lecb.ncifcrf.gov/~toms/paper/logopaper/), in Figure 4.
Clearly, the algorithm converges on proline-rich peptides (many even
seemingly PxxP-like), even for domains in which there are very few inter-
actions. We also see common SH3-binding residues, such as leucine,
arginine and others (Section 1), often in their expected flanking positions

http://www.lecb.ncifcrf.gov/~toms/paper/logopaper/
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Table 1. Comparison of the results of our algorithm (row 5)
against the two algorithms (A) and (B) described inSection 1
using a Gibbs sampler (1) and MEME (2).

Algorithm Overlap interactions ROC integral Motif match scores
A, 1 40± 3.1 0.76± 0.010 0.47± 0.06
A, 2 27± 2.7 0.66± 0.011 0.41± 0.04
B, 1 41± 2.9 0.77± 0.008 0.41± 0.05
B, 2 35± 1.6 0.72± 0.013 0.42± 0.03
Our algorithm 49± 2.7 0.79± 0.008 0.55± 0.08

See text (Sections 4.1and4.2) for an explanation of the three columns.

surrounding or within the proline-rich core. However, polyproline strings
clearly dominate the signal, and reveal a clear detriment of our technique.
The same feature of the algorithm that directs the sampler to converge
on proline-rich peptides also serves to weakens the effect of any higher
order signal in the individual motifs. This is a classic example of trying
to find the best compromise between over- and under-fitting the model to
the available (noisy) data.

We computed how similar our computationally derived consensus bind-
ing motifs (such as those displayed inFig. 4) are to those computed from
the phage display experiments ofTonget al. (2002) (their table 2). This
was done by generating a set of PSSMs from their consensi, and computing
the Pearson correlation coefficients of those PSSMs with our computa-
tionally derived motifs (Pietrokovski, 1996). This measurement, which
lies in the range[−1, 1], was often higher for the consensi derived from
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Fig. 4. Sample logos of the individual SH3 ligand motifs for each SH3 domain in theTonget al.(2002)
two-hybrid SH3 network, resulting from a single run of our algorithm.
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our algorithm than it was using any of the four methods identified above
(p . 10−3; Table 1, column 3).

4.3. Binding site prediction

The likelihood of an interaction with an arbitrary binding siteai , j , in
sequencesj (i.e. the binding occurs with residuessj ,ai , j +1, . . . ,sj ,ai , j +w)
can be derived analogously toEquation (7), and results in

P(εi , j = 1 | ai , j ,sj ,ai , j +1, . . . ,sj ,ai , j +w, θ0,2i )

= logit

[
log

(
P(εi , j = 1)

P(εi , j = 0)

w∏
k=1

θi ,k,sj ,k+ai , j

θ0,k,sj ,k+ai , j

)]
. (8)

The ratiopsite ≡ P(εi , j = 1)/P(εi , j = 0) is a site-based prior, describ-
ing our expectation that any site insj is indeed a binding site, given that
an interaction does occur somewhere in the sequence. Where we have a
prior expectation ofnsite binding sites per interaction, we use a uniform
prior distribution psite = nsite/(L j − w), with nsite ≡ 1. This allows
us, for a given domainDi and interactor sequencesj in which we pre-
dict P(εi , j ) = 1 via Equation (7), to identify putative binding sites up
to a certain probability cut-off. We have chosen to perform this computa-
tional analysis on the protein Las17, whose binding sites with various SH3
domains were also determined experimentally (via ELISA experiments)
by Tonget al. (2002).
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A comparison of the most likely predicted binding sites on Las17 with its
various predicted interactors based uponEquation (8)shows that we do not
have the sufficient specificity to accurately predict binding sites using our
probabilistic model (p = 0.69). When we performed the identical analysis
using the phage display-derived motifs ofTonget al.(2002) we see a some-
what more significant ability to predict binding sites (p = 0.28). Even
this result seems to be at odds with the analysis performed in the paper
in which only one of 15 binding sites were incorrectly predicted. Such a
disparity reveals one of the weaknesses of our model with regard to SH3:
we use only one consensus for each domain (as opposed to two, which the
phage display experiments are capable of resolving). Further, our com-
bined model results in the blurring of the individually specific motifs,
which seems to diminish the specific resolving power of the motifs in pre-
dicting individual binding sites. It should also be pointed out, however,
that the particular ELISA experiments performed byTong et al. (2002)
on Las17 are subjected to some of the same potential systematic effects
the phage display experiments are, which could be artificially enhancing
the agreement between the two experimental methods in their work.
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5. Discussion
There have been several attempts to predict the ligands of SH3 and other
PRM domains in the recent past, using methods, such as profile scan-
ning (Obenaueret al., 2003), neural networks (Chang and Page, 2002)
and structural models (Brannettiet al., 2000), with varying degree of
success. All these techniques are specific to the particular system that is
being investigated. We have described a method for identifying such lig-
ands using only sequence and high-throughput interaction data, without
requiring any additional prior assumptions on the system, or any type of
structural information. We have shown that our technique is capable of
characterizing the peptides that bind to sets of SH3 domains and thereby
predicting which proteins these domains will interact with, nearly as accu-
rately as the motifs derived from phage display experiments. However, our
technique is not able to correctly identify the individual binding sites that
the domains bind to.

There is clearly information that plays an important role in this sys-
tem, that we are not including in our statistical model. As a simple
example, additional prior information on the selection of interaction sites
ai , j , e.g. based on modeled or observed three-dimensional structures
(such as residue burial predictions), or other sequence-based prior knowl-
edge, may be incorporated into the model as a non-uniform priorP(ai , j )

(Section 3.3). More intelligent choices of motif priors (Section 3.2), such
as inclusion of the PxxP signature, or some sort of discrimination between
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class-I and class-II motifs, would also probably help, although it would
result in a loss of generality of the technique to other systems. We have
also ignored the structure or sequence of the SH3 domains completely, and
perhaps this is the ultimate limitation of our technique. Such information
could potentially be included into the model, in a variety of ways (many
of which, again, could result in loss of generality).

While we have tried to keep the algorithm as general as possible, there
remain three user-tunable parameters (qg, q1, andqd) that must be chosen
for each training interaction data set. As with many algorithms, choosing
the appropriate combination of parameters would be more of an art than
a science, and if one were to apply this algorithm to a different dataset,
choosing inappropriate parameters will result only in the effectiveness of
the algorithm falling back to those of the standard Gibbs sampler or MEME
(Table 1). In such a case, a good place to start would be to compare the
target interaction network with that which we have used in this paper. For
example, for a more loosely connected graph or one in which the motifs
are expected to be more similar, one would increaseqg and decreaseq1
andqd; and vice versa for a more tightly connected graph or one in which
the motifs are expected to be dissimilar.

We have only tested our algorithm on the system of interacting SH3
domains in yeast, but it could potentially be used in the analysis of other
PRM domains, such as WW, SH2, PDZ and Vasp, or in other species,
once the results of any similar all versus all interaction screens become
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available. We believe that a major limitation on the performance of the
algorithm lies in the quality of the interaction data that it is trained on.
Reducing the false positive rate of the training data by incorporating
positive (and negative, where available) interactions derived from lower
throughput techniques can be expected to increase the predictive power
of our method.

Finally, we believe we have developed a framework that is general and
flexible enough that it could, with few modifications, be applied to com-
pletely new systems of interactions between various biomolecules. Such
potential targets of this analysis could include other domain–peptide inter-
action systems (e.g. immune response interactions) and protein–DNA
interaction sets (Leeet al., 2002).
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