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ABSTRACT
Motivation: Transcriptional activation in eukaryotic organ-
isms normally requires combinatorial interactions of multi-
ple transcription factors. Though several methods exist for
identification of individual protein binding site patterns in
DNA sequences, there are few methods for discovery of
binding site patterns for cooperatively acting factors. Here
we present an algorithm, Co-Bind (for COperative BIND-
ing), for discovering DNA target sites for cooperatively act-
ing transcription factors. The method utilizes a Gibbs sam-
pling strategy to model the cooperativity between two tran-
scription factors and defines position weight matrices for
the binding sites. Sequences from both the training set
and the entire genome are taken into account, in order to
discriminate against commonly occurring patterns in the
genome, and produce patterns which are significant only
in the training set.
Results: We have tested Co-Bind on semi-synthetic and
real data sets to show it can efficiently identify DNA target
site patterns for cooperatively binding transcription factors.
In cases where binding site patterns are weak and cannot
be identified by other available methods, Co-Bind, by virtue
of modeling the cooperativity between factors, can identify
those sites efficiently. Though developed to model protein–
DNA interactions, the scope of Co-Bind may be extended
to combinatorial, sequence specific, interactions in other
macromolecules.
Availability: The program is available upon request from
the authors or may be downloaded from http://ural.wustl.
edu.
Contact: dg@genetics.wustl.edu;
stormo@genetics.wustl.edu

1 INTRODUCTION
Understanding the complex transcriptional regulatory
network is an interesting and challenging problem.
Towards that goal the elucidation of the basic regulatory
apparatus, which is organized in the form of arrays of
transcription factor (TF) binding sites on DNA, is of
primary importance. Due to the laborious and time con-
suming procedure of elucidating TF binding sites through

experimental methods, computational methods for iden-
tifying TF binding sites is an active area of research.
Several methods for local multiple sequence alignment
have been used to address the problem of identification
of individual TF binding site patterns, e.g. Consensus
(Hertz and Stormo, 1999), MEME (Bailey and Elkan,
1994), Gibbs Sampler (Lawrence et al., 1993), ANN-Spec
(Workman and Stormo, 2000). In many cases where
binding sites for TFs are known from experiments, these
programs have been shown to yield the known binding site
patterns, indicating that the results of these methods can
be useful in discovering unknown TF binding sites from
a collection of sequences believed to contain a common
binding site pattern. With the advent of technologies
like DNA microarray (DeRisi et al., 1997; Lockhart et
al., 1996), SAGE (Velculescu et al., 2000) and various
hybridization methods which can measure the mRNA
expression levels of different genes, such a collection of
sequences can now be readily obtained. Genes which have
similar expression profiles, or are expressed in specific
contexts, may be assumed to have similar transcription
mechanisms governing their expression. Hence, upstream
promoter regions of these genes might contain the binding
sites for the same transcription factors. Application of
local multiple sequence alignment methods on a set of
unaligned promoter regions from such genes can help to
identify novel TF binding sites.

Detailed experimental work on several individual genes
(Fickett, 1996; Weintraub et al., 1990; Yuh et al., 1998;
Zhong and Vershon, 1997) elucidate that the transcription
regulatory mechanism in eukaryotes, and especially in
higher organisms, is inherently much more complex than
moderation of gene expression levels by binding of one
single TF to the gene promoter region. In many (if not
most) cases, transcription factors do not work alone,
regulation results from the cis-regulatory action of several
factors. TF binding sites are often organized in functional
groups called modules (Yuh et al., 1998; for a review
see Werner, 1999) where TFs bind the promoter regions
and regulate transcription as synergistic (cooperative) or
antagonistic pairs (Arnone and Davidson, 1997; Fickett,
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1996; Yuh et al., 1998) (for more examples see the
COMPEL database, Kel et al., 1995). In synergistic or
cooperative binding, simultaneous interactions of two
factors with closely situated target sites can result in a
non-additively high level of a transcriptional activation,
whereas in antagonistic binding two factors interfere with
each other so that competition for overlapping sites leads
to a mutually exclusive binding of TFs (definitions taken
from Kel et al., 1995; http://compel.bionet.nsc.ru/compel/
compel.html). Cooperative binding of factors to DNA and
formation of a ternary complex of protein–protein–DNA
has been shown in many cases (Weintraub et al., 1990;
Moreno et al., 1995; Fickett, 1996; Muhlethaler-Mottet et
al., 1998).

Computational methods have recently begun to address
these issues in gene regulation. Since cooperatively acting
TFs need to be placed in close proximity to each other, the
joint occurrence of two known binding site motifs within
some distance constraints has been used for identification
of transcription factor binding modules (Klingenhoff
et al., 1999). Methods have shown that utilization of
information about coordinate or close positioning of
known transcription factor binding sites present in the
cis-regulatory elements of genes expressed in a specific
context lead to more accurate prediction of novel genes
which are likely to involve similar regulatory mechanisms
(Wasserman and Fickett, 1998; Wagner, 1999). Thus,
given two (or more) known binding site motifs and the
information about their coordinate positioning, several
methods can efficiently predict new regulatory regions
involving those motifs. However, few methods exist to
address the problem of discovering target site motifs for
cooperatively binding TFs. Very recently, one method,
Bio-Prospector, has been described for identification of
two-block motifs (Liu et al., 2001) which could poten-
tially be used for identification of closely located binding
site motifs for two cooperatively acting TFs.

Here we present a novel computational method, Co-
Bind, for discovering binding site motifs for cooperatively
acting factors. Our method models cooperative DNA bind-
ing by TFs by maximizing the joint likelihood of occur-
rence of two binding site motifs, in the process describing
the Position Weight Matrices (PWMs) for the two binding
motifs. Where the affinity of a given factor for a target site
is low, cooperative interaction with another factor placed
at an appropriate distance on the cis-regulatory region
can increase both complex stability and specificity for the
protein–DNA interaction. When addressing this problem
computationally, this issue can be translated as follows:
where the probability of observing one binding site is
too small the joint probability of observing two binding
sites may be high; or, from an information theoretic point
of view, when the information content of a binding site
motif is too small the information content of both binding

site motifs taken together may become high enough for
detection. We have tested Co-Bind on semi-artificial and
real data sets from yeast. It is shown that the method
can not only identify DNA binding site patterns within
certain distance restrictions, but by virtue of modeling the
cooperativity is also able to identify weak patterns for two
TFs which would not have been identified if searched for
individually using existing programs. Co-Bind may be
applied to other cases of combinatorial, sequence specific,
macromolecular interactions. We show that Co-Bind can
effectively identify weak sequence signals for translation
initiation in the Escherichia coli genome.

The relationship between information content of binding
sites, spacing between the sites and expectation of binding
site detection is discussed from an information theoretic
point of view.

2 ALGORITHM AND IMPLEMENTATION
2.1 Overview
Two sequence data sets are given viz. the positive or
training set, which represents a set of cis-regulatory
elements, and a background set representing the genome.
The positive set may be a collection of sequences believed
to contain binding sites for two cooperatively binding
TFs. The problem is to identify the binding site patterns
for two TFs which bind cooperatively in the positive
set. An objective function, which is derived from the
thermodynamics of protein–DNA binding, is optimized
to obtain PWMs for the two different DNA binding site
patterns. In the objective function, sequences from both
the training set and the genome are taken into account to
discriminate against commonly occurring patterns in the
genome and obtain patterns with higher specificity for the
training set.

2.2 Description of the PWMs
A position weight matrix has previously been found to
be a good model for describing protein binding sites in
DNA (Stormo, 2000). An l long DNA binding site pattern
may be described by a 4 × l weight matrix, with four
weights (for four DNA nucleotides) per pattern position
(Figure 1A). Let us assume each weight in the matrix is
the binding energy contribution of each nucleotide at a
particular pattern position. With the additional assumption
that protein–DNA contacts at individual residue positions
in the binding site are independent of each other (Berg
and von Hippel, 1987), the total binding energy for a TF
molecule to a particular site is given by:

Hsite =
l−1∑
k=0

3∑
b=0

ωk,b · xk,b

where, ω denotes the PWM weights, x denotes the inputs
from the site (DNA bases at different positions) k ranges
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over the l positions of the site, b ranges over all four
DNA bases. A simple weight matrix may also be looked
upon as a simple, single layer, neural network (perceptron)
(Stormo et al., 1982), with one layer of weights between
the input (site sequence) and the output (binding energy
of TF to that site). Here, two weight matrices are used
to represent the binding sites for two TFs and their
combinatorial binding energy is given by the sum of
individual binding energies (Figure 1B).

2.3 Description of the objective function
Derivation of the objective function is based on thermody-
namics of DNA–protein binding. We first describe the ob-
jective function for identification of one binding site pat-
tern, which is then extended to the two pattern problem.
The objective function the for one site problem has been
described before (Workman and Stormo, 2000), but is de-
scribed here again in brief to facilitate the derivation of
the objective function for cooperatively acting TF binding
sites.

Suppose we are given two sequence sets, viz. positive
sequence set, S , and background sequence set, G. Let s j ,
be a sub-sequence from any sequence Si , in the training
set with offset j . Instances of s j may be present multiple
times in both the positive and background sets; Pj is the
likelihood of finding s j in the genome. Let us assume
a TF molecule is bound somewhere in the genome. The
likelihood that any of the sub-sequences s j is bound
is related to the binding energy, Hj , of the factor to
s j and probability of observation of s j . By following
maximum entropy distribution and Boltzmann equation
this likelihood is be given by:

Fj = Pj · e−Hj∑n
j Pj · e−Hj

= Pj · e−Hj

Y
(1)

where, Y = ∑n
j Pj e−Hj is the partition function over

the distribution of all sequences assuring
∑n

j Fj = 1, n
denotes the total number of all sub-sequences, like s j , in
the genome. The likelihood that one particular instance of
s j is bound is thus,

( Fj
Pj

)
.

Suppose: (a) s ji is the binding site for the TF in sequence
Si , (b) there are total of p, sequences, like Si in the training
set, (c) for each of these sequences there is only one
binding site starting at offset position ji , (d) binding sites
in all p sequences are occupied. The probability that a TF
molecule is bound to its site, s ji in sequence, Si , is given
by:

bi = Fji

Pji
= e−Hji

Y
(2)

The probability that a TF molecule is bound to its site in
every sequence of the positive set is given by the product

of individual probabilities:

B =
p∏

i=1

bi =
p∏

i=1

(
Fji

Pji

)
=

p∏
i=1

(
e−Hji

Y

)
(3)

Our objective is to maximize this probability. We can
instead maximize the logarithm:

ln B = ln
p∏

i=1

e−Hji

Y
=

p∑
i=1

(−Hji ) − p · ln Y (4)

To have an expression independent of the number of
sequences in the positive set, the objective function is
defined as follows:

U = 1

p

p∑
i=1

(−Hji ) − ln Y (5)

When considering binding sites for cooperatively interact-
ing factors, we assume the two factors are simultaneously
bound to different sites or sub-sequences in each of the
positive set sequences. The partition function in this case
may be given by:

Yc =
∑

i

∑
j, j ′

(Pj · e−Hj ∗ Pj ′ · e−H ′
j ′) (6)

where, superscript ‘c’ is for cooperative binding, j and
j ′ are offsets for two different, non-overlapping, sub-
sequences in a sequence, Pj and Pj ′ are the probabilities
of observing these sub-sequences in the genome, Hj
and H ′

j ′ are binding energies of the two TFs to these
sub-sequences; i sums over all sequences in the genome,
j and j ′ sums over all possible pairs of non-overlapping
sub-sequences in each of these sequences. Analogous to
equation (2), the probability that both factors simultane-
ously occupy their respective binding sites, s ji and s j ′i in
a sequence, Si , of the training set, may be given by:

bc
i = e−Hji · e

−H ′
j ′i

Yc = e
−(Hji +H ′

j ′i )

Yc = e−Hi

Yc (7)

The probability that both sites are simultaneously oc-
cupied in all sequences of the training set, is thus
Bc = ∏p

i (bc
i ). Our objective is to maximize this probabil-

ity, hence, analogous to the one site problem, the objective
function to be maximized is given by:

U c = 1

p

p∑
i=1

(−Hi ) − lnYc (8)

2.4 Training the PWMs
The PWM or perceptron weights are fit to the training
data by a gradient descent approach. Prior to the start of
training we initiate two PWMs with an arbitrary set of
weights. The following steps are then followed to train the
perceptron weights:
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Fig. 1. (A) Schematic representation of a single DNA weight matrix or preceptron. ωk,b denotes the weight for pattern position k, and base
b. H j is the output score from the PWM or perceptron for a given sub-sequence starting at position j in a particular sequence. (B) Schematic
representation of two perceptrons for binding sites for cooperatively binding factors. Two perceptrons are allowed to sample non-overlapping
sites from two different offset positions starting at j and j ′ on a particular sequence. H, the cooperative output, is given by sum of individual
outputs from the two perceptrons.

(1) Calculate individual objective functions for the two
perceptrons, U1 and U2, following equation (5),
and the two site cooperative objective function, U c,
using equation (8). (While estimating the partition
functions Y or Yc, rather than calculating over
all background sequences, one can sample a large
number of sites at random to approximate the
background.) Set current U c to U c

max and current
perceptron weights to best weights, i.e. ω1 = ω1best
and ω2 = ω2best. The best weights represent best
possible descriptions for the two binding sites.

(2) Select two non-overlapping sites from each of the
training set sequences by Gibbs sampling (Lawrence
et al., 1993) using the two representative weight
matrices.

(3) Update the perceptron weights ω1 and ω2 by gradi-

ent descent following the equations:

�ω1 = η1 ·
(

δU1

δω1

)
− λ1 · ω1

�ω2 = η2 ·
(

δU2

δω2

)
− λ2 · ω2 (9)

where, η1 and η2 are the step sizes, λ1 and λ2 are
decay parameters.

(4) Recalculate individual objective functions, U1 and
U2 and the two site cooperative objective function,
U c. If current U c is greater than U c

max set: U c
max =

U c; ω1best = ω1; and ω2best = ω2;

(5) Iterate through steps 2–4 for a fixed number of
times. Report U c

max and best weights, ω1best, ω2best.
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2.5 Implementation
Co-Bind was implemented in C++ and was developed on
Sun workstations running Solaris. The code is portable
and can be compiled and run under the Unix environment.
A typical program run on 30 training set sequences,
each 500 nucleotides long, (background sequence set of
∼6000, 500 nucleotide long sequences) takes 
3 min on
a Sun workstation with a 296 MHz processor; the memory
requirement never exceeds 25 MB. The computation time
is O(N ), where N is the number of sequences in the
training set, because we do a fixed number of iterations
rather than wait for convergence.

3 DATA
3.1 Semi-artificial sequences
Semi-artificial sequence data was generated for testing the
program. Thirty ORFs were chosen from the yeast genome
at random. Upstream regions of these genes (from −500 to
−1 relative to the translation start site) were taken. Various
sequence patterns were implanted in these sequences to
yield different training sets. The background set consisted
of identical regions (−500 to −1) from all ORFs in the
yeast genome. All yeast ORF upstream sequences were
obtained from the yeast promoter database, SCPD (Zhu
and Zhang, 1999) (http://cgsigma.cshl.org/jian/). Several
different training data sets were prepared:

(1) Two sequences of length ten were arbitrarily
chosen, AATCGCGTTA and GGATATATCC. For
each, an alignment of thirty sites was initially
generated, each element of the alignment being an
exact copy of the consensus. The alignment was
then mutated a number of times depending on the
specified mutation rate. The number of mutations
introduced in the alignment is given by (r · p · l),
where r is the mutation rate, p is the number of
sequences in the alignment and l is the length of
the sites. Substitution probabilities are defined by
the nucleotide priors for yeast (0.315 for As and Ts,
0.185 for Gs and Cs) and reflexive substitutions are
disallowed (i.e. once a particular nucleotide of an
element is mutated, its not mutated again). Mutation
rates for AATCGCGTTA alignment varied from
0.18 to 0.33 and that for GGATATATCC ranged
from 0.25 to 0.37 to give alignments with varying
degrees of conservation. The information content
of each mutated alignment is given in Table 1A; all
information content values are given in nats (loge)
instead of bits (log2). Each instance of the mutated
alignment for both patterns (henceforth referred
to as a binding site) are then implanted into the
thirty positive set sequences in random orientations
and random positions, but within a certain distance
of each other. Since in cooperative binding of

TFs binding sites for the factors are often located
close to each other, the artificial binding sites were
implanted within certain distances of each other.
Several training sets were created with the elements
from two different alignments implanted within 25,
50, 100, 150 or 200 nucleotides. Care was taken to
see the implanted patterns did not overlap with each
other.

(2) Training sets were created where elements from
only one particular alignment, corresponding to
either AATCGCGTTA or GGATATATCC, were
implanted in the same 30 yeast ORFs.

Data set (1) was generated to test Co-Bind and Bio-
Prospector (Liu et al., 2001) programs. Data set (2) was
generated to check how well the individual binding site
patterns can be identified by other available programs.

3.2 Yeast genes regulated by two TFs
In order to test if Co-Bind could identify biologically
relevant TF binding site patterns which would be missed
using other pattern finding programs we obtained four sets
of yeast genes which have been experimentally shown to
be regulated by two factors:

(1) A set of eleven genes are regulated by the Cbfl–
Met4p–Met28p complex and Met31p or Met32p
in response to methionine (van Helden et al.,
1998). The individual binding site patterns for
Cbfl–Met4p–Met28p complex and Met31p/Met32p
can be given by the consensus TCACGTG and
AAACTGTGG, respectively (van Helden et al.,
1998). Upstream regions (−700 to −1) were ex-
tracted from SCPD for these genes, as the relevant
binding sites in all eleven genes were located in
that sequence region. The background sequence set
contained −700 to −1 regions from all yeast ORFs.

(2) Matα2 protein is involved in a regulatory system that
specifies cell mating type in yeast Saccharomyces
cerevisiae (Zhong and Vershon, 1997). In haploid
α cells and diploid cells, Matα2 interacts with a
general transcription regulatory factor, Mcm1, to
repress expression of a-specific genes. A group of
six genes were collected from the SCPD (Zhu and
Zhang, 1999) that were regulated by binding of
both Matα2 and Mcm1. The binding site patterns
for Matα2 and Mcm1 may be represented by the
consensuses sequences AATGA(A/C)(A/T)T and
CCTAAT(A/T)GGG respectively. Upstream regions
(−350 to −1) were taken from SCPD for these
genes, as all relevant binding sites were contained in
that region. The background sequence set consisted
of −350 to −1 regions from all yeast ORFs.
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(3) SCPD contains five genes which are regulated
by transcription factors GCR1 and RAP1. GCR1
and RAP1 have been shown to act in concert
to mediate high-level glycolytic gene expression
in S.cerevisiae (Baker, 1991). Binding sites for
GCR1 and RAP1 can be represented by consensus
sequences ACCCAGACA(A/T) and GGGCTTCC
respectively. Upstream sequences (−700 to −300)
were taken from SCPD for these five genes, as all
relevant binding sites were contained in that region.
The background sequence set consisted of −700 to
−300 regions from all yeast ORFs.

(4) In S.cerevisiae more than 25 characterized genes are
expressed only during sporulation and are referred
to as meiotic genes or sporulation-specific genes.
These genes are in the early, middle, and late
expression classes. Most early genes have a 5′
regulatory site, URS1, and one of two additional
sequences, UASH or a T4C site (Mitchell, 1994).
URS1 site is required both to repress meiotic
genes during vegetative growth and to activate
these genes during meiosis. UASH and the T4C
site also contribute to meiotic expression. In some
cases cooperation between URS1 and UASH sites
has been shown to be required for full induction
of expression (Prinz et al., 1995). SCPD contains
11 genes regulated by both URS1 and UASH
sites. The URS1 binding site contains a motif with
a highly conserved GC-rich core GCCGCC; the
UASH site is not as well conserved. In 10 out of the
11 genes URS1 and UASH binding sites are located
within the upstream region −300 to −1; we obtained
the −300 to −1 sequences for those 10 genes from
SCPD. Background sequence set consisted of the
−300 to −1 regions from all yeast ORFs.

3.3 E.coli translation initiation sites

The entire E.coli K-12 genome sequence and gene co-
ordinates were obtained (http://www.genetics.wisc.edu/)
(Blattner et al., 1997). All genes annotated as ‘hypo-
thetical’ or ‘putative’ were ignored. From the remaining,
30 genes were chosen at random. The −25 to +25 regions
(numbering relative to annotated translation start sites)
of these 30 genes were taken for sequence analysis. The
background sequence set consisted of 4000 randomly
generated sequences, each 50 nucleotides long. Base
priors used for generating the background set was same
as that of E.coli, 0.25 for all four bases.

4 METHODS
4.1 Identification of individual binding site

patterns
To check whether the individual binding site patterns
can be identified by well known methods, several pro-
grams were run viz. Consensus (Hertz and Stormo,
1999), MEME (Bailey and Elkan, 1994), Gibbs Sam-
pler (Lawrence et al., 1993) and ANN-Spec (Workman
and Stormo, 2000). All programs were run with the
specifications: (1) length of the pattern to be identified;
(2) expected frequency of binding sites (one site per se-
quence, unless mentioned otherwise); and (3) appropriate
strands of the DNA (just positive, or both positive and
reverse complement) to be included in the search.

Consensus. The Consensus program identifies a pattern
with the highest information content in a given set of
sequences. Version 6.c of Consensus was used and the top
scoring result was reported.

MEME. The MEME algorithm uses an expectation
maximization algorithm for finding patterns in input
sequences. MEME Version 2.2 was run over the MEME
web-server (see reference). The top scoring result was
reported.

Gibbs sampler. Charles Lawrence’s Gibbs Motif Sam-
pler (Version 1.01.009) was used, with the option ‘site
sampler’. 100 different ‘seeds’ or starting points were
used, a maximum of 2000 iterations were performed for
each run, and the highest scoring result was reported.

ANN-Spec. Version 1.0 was used. Due to the non-
deterministic nature of the algorithm, multiple training
runs are performed (100), with each run iterating 2000
times. The results are sorted by their best attained ob-
jective function values, Umax, (see equation (5)). Weight
matrices corresponding to the ten highest scoring runs are
observed. The binding site pattern is said to be identified
correctly in one of these runs if the consensus from
the weight matrix matches the consensus of the known
patterns. Results for ANN-Spec are reported in terms of
the number of times (out of ten) binding site patterns were
identified correctly.

4.2 Identification of binding site patterns for
cooperative factors

Co-Bind. Co-Bind was used to identify target sites for
cooperative factors. In order to optimize the parameters
for Co-Bind (viz. step-sizes and decay parameters; equa-
tion (9)), it was run on many artificially generated data
sets in which two different binding site patterns were
implanted. The training data sets consisted of 30 artificial
sequences, each 500 nucleotides long, with two different
binding sites, of several different lengths, implanted at
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random positions. The background set contained 3000
artificially generated sequences, each 500 nucleotides
long, but with no implanted sites. Several values of
step-size η (from 1 to 10) and decay factor λ (from 0.0 to
0.5) were tested. The step-size determines the extent to
which the perceptron weights will move in direction of
the ( δU

δω
) gradient (equation (9)) and the decay parameter

allows the perceptrons to retain a fraction of its previous
weights (e.g. a decay parameter of 0.1 will allow retention
of 90% of previous weights). A large step-size and decay
parameter allows the perceptron to wander more in
sequence space, while smaller rates result in more local
searches with the final result being more sensitive to the
initial weight settings (Workman and Stormo, 2000). A
step-size of 3 and decay factor of 0.06 for training of
both perceptrons seemed to work well with a wide range
of artificially generated training sets (data not shown).
Hence, all Co-Bind results reported are with these fixed
parameters. We perform 100 training runs for Co-Bind
with each run iterating 2000 times. Runs were sorted by
the best attained cooperative objective function, U c

max (see
equation (8)), and the perceptron weights corresponding
to the ten highest scoring runs were observed. Like in
ANN-Spec, binding sites are said to be identified correctly
in one of these runs if the consensus from the perceptron
weights match the consensus of known patterns. Results
for Co-Bind are reported in terms of the number of runs
(out of top scoring ten runs) which identified both binding
site patterns correctly.

BioProspector. The BioProspector program (Liu et al.,
2001) uses a modified Gibbs sampling strategy to identify
two binding site motifs within certain distance constraints.
The maximum allowable distance between the two motifs
is 50 nucleotides. BioProspector uses zero to third-
order Markov background models whose parameters are
estimated from a given sequence file. The minimum
distance between the two motifs was set to 0 nucleotides
and maximum distance between two motif blocks was set
to 25 or 50 depending on the training data set (see results).
50 runs were be performed in each case and all statistically
significant motifs were reported.

5 RESULTS
5.1 Semi-artificial sequences
Consensus, MEME, Gibbs Sampler and ANN-Spec were
run on training data sets, where only one kind of binding
site pattern was implanted from a mutated alignment
as explained in the data section. All programs were run
with: (1) length of binding sites to be identified set to 10;
(2) expected frequency of sites, one per sequence; (3) both
positive and reverse complement of DNA sequence
included in the search. Several representative results are
shown in Table 1A. Most programs were able to identify

the AATCGCGTTA and GGATATATCC binding site
patterns correctly only when the mutation rate for the
alignments were 0.18 and 0.25 respectively.

Low-complexity patterns (e.g. poly-A or poly-T) occur
frequently in promoter regions of yeast. Often they tend
to appear as the best results of pattern finding programs
which do not consider the background sequence set. We
observe a similar situation with some of our tests. In
several instances Consensus and Gibbs Sampler fail to
identify the implanted binding site patterns, identifying
poly-A or poly-T as best patterns instead. ANN-Spec,
by considering both the training and background sets, is
able to discriminate against these commonly occurring
patterns and find those which are present only in the
positive set (Workman and Stormo, 2000; C.T.Workman
and G.D.Stormo, unpublished observations).

Co-Bind was run on training sets where two different
binding site patterns were implanted simultaneously.
Length of the patterns to be identified were set to 10,
and both the positive and reverse complement strands
of DNA were included in the search. As the objective
function for Co-Bind (equation (8)) is closely related to
that of ANN-Spec (equation (5)), it is useful to compare
results of the two programs in order to see whether
modeling cooperativity between binding sites can help
in identification of patterns which, by themselves, are
too weak to be identified. ANN-Spec results show how
well binding sites may be identified individually, whereas
Co-Bind results show how well a binding site pattern can
be identified in the presence of the other (Table 1B).

In cases where the first and second binding site patterns
are too weak to be identified by Consensus, MEME,
Gibbs Sampler or ANN-Spec, Co-Bind can identify the
implanted sites correctly by looking for two binding sites
within a certain distance of each other. For example,
binding site patterns for AATCGCGTTA with mutation
rates 0.29 and 0.33; and that for GGATATATCC with
mutation rates 0.33 and 0.37 are not identified well
by any of the methods. Presumably, the information in
individual patterns is not strong, but the combinatorial
information on both patterns is high enough for their
simultaneous identification using Co-Bind. When binding
sites are located close to each other (e.g. within 25 or
50 nucleotides) binding sites are identified with higher
sensitivity.

5.2 Yeast genes regulated by two factors
Out of four sets of genes which are regulated by binding
of two factors (see data), in three cases the patterns for
both sites can be obtained from the upstream regions
of the genes regulated by them, using one or more of
the programs—Consensus, MEME, ANN-Spec or Gibbs
Sampler, in a sequential manner. When run on promoter
regions of the genes, the programs first identified the
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Table 1. (A) Identification of individual patterns. The consensus for implanted patterns are shown along with the mutation rate (r) and Information Content (IC)
of the alignment in nats. Consensus from the weight matrices produced by the Consensus program, Gibbs Sampler, MEME are shown. A pattern is said to
be identified correctly when consensus from identified pattern matches the consensus of implanted pattern with no more than two mismatches. All correctly
identified patterns are marked with ∗. For ANN-Spec, the result is given by a number indicating times (out of top scoring 10 runs) the correct pattern is
identified. The weight matrix consensus from all top scoring ANN-Spec runs are also shown for reference. (B) Results of Co-Bind runs and comparison
with ANN-Spec results. ANN-Spec results are from (A). Co-Bind program was run on sequences with two different implanted patterns. Co-Bind results are
given by the number of times both implanted patterns are identified correctly. Criterion for deciding correct results is same as in (A), i.e. not more than two
mismatches between identified pattern consensus and implanted pattern consensus

Consensus

Binding Site

Mutation Rate, r

AATCGCGTTA GGATATATCC

MEME

ANN-Spec

0.18 0.29 0.33 0.25 0.33 0.37

AATCGCGTTA*      TTTTTCTTTT         TTTTCTTTTT      GGATATATCC*        TTTCTCTTTT         TTTCTCTTTTC

I.C. (nats) 7.61            6.23            5.76           6.57              5.55             5.22

CCACGCGTGG      GCGCATGCGC      GCACATGTGC     GGATATATCC*       GGGCATGCCC        CTGCCGGCAG

10
AATCGCGTTA*
ATCGCGTTAT*
AGCTAGCTTT
CGGGATTGCC
CTCGCGGGGT
GGGCTAGGAA
AGATCGTGAG
CCTGCAAATA
AATCCAGAGA
AAATAACTTT

2
AGCTAGCTTT
CGGGATTGCC
CTCGCGGGGT
TGGGGGTACT
GAGTGTTTTT
CATCATCATC
AGATCGTGAG
GATCATGCTC
GGGCTAGGAA
AAGGATTACC

0
GGATATATCC*
GGATATATCC*
GGATATATCC*
GGATATATCC*
GGATATATCC*
GGATATATCC*
GGATATATCC*
GGGATATATC*
GGATATATCC*
GGATATATCC*

GGATATATCC*
GGATATATCC*
GGATATATCC*
GGATATATCC*
AGCTAGCTTT
CTCGCGGGGT
GGGCTAGGAA
GAGGAACTTA
CGCCCCTTGC
AATCCAGAGA

TTAAGCGGAG
AGCTAGCTTT
CTCGCGGGGT
CGGGATTGCC
GGGCTAGGAA
GAGTGTTTTT
GAGGAACTTA
CCTGCAAATA
AATCCAGAGA
CATGATCACC

10 4 0

Gibbs Sampler AATCGCGTTA*      TTTTTTCTTT       AAAGAGAAAA     AAAGAAAAAA     AAAGAAAAAA       AAAGAAAAAA

AATCGCGTTA*
AATCGCGTTA*
AATCGCGTTA*
AATCGCGTTA*
AATCGCGTTA*
AATCGCGTTA*
AATCGCGTTA*
AATCGCGTTA*
AATCGCGTTA*
AATCGCGTTA*

Table 1A

Pattern Consensus  Mut. Rate  ANN-Spec   Pattern Consensus   Mut. Rate   ANN-Spec

Implanted Patterns Co-Bind results

First Pattern                                                 Second Pattern

AATCGCGTTA        0.29               2            GGATATATCC       0.25               10              10         10       10          10         10    

Maximum  possible separation
    between implanted sites

  25         50      100        150       200

AATCGCGTTA        0.33               0            GGATATATCC       0.25               10              10         10       10          10         10    

AATCGCGTTA        0.29               2            GGATATATCC       0.33                4               10         10       10          10         10    

AATCGCGTTA        0.33               0            GGATATATCC       0.33                4               10         10        9            8          10    

AATCGCGTTA        0.33               0            GGATATATCC       0.37                0               10          8         4            4           1    

Table 1B

AATCGCGTTA        0.18              10           GGATATATCC       0.25               10              10         10       10          10         10    

stronger of the two patterns. The highest scoring sites
corresponding to the weight matrix of the first pattern were
then deleted from each sequence in the set. The programs
were re-run a second time on the promoter sequences to
identify the second binding site pattern. Binding patterns
which can be identified in this manner include Cbfl–
Met4p–Met28p complex and Met31p/Met32p (in data-
set 1); Matα2 and Mcm1 (in data-set 2); GCR1 and RAP1
(in data-set 3). In all these data-sets Co-Bind is able
to identify both patterns with high sensitivity (data not
shown). In data-set 4 one of the patterns is not identified

using any other method except Co-Bind. Detailed results
for the fourth data-set are described below.

Table 2 summarizes the information about the genes reg-
ulated by both URS1 and UASH sites; the experimentally
reported sites, the position of sites relative to the transla-
tion start, and the distance between the sites. All of the
above information were obtained from SCPD. We have
not considered the HOP1 gene in our analysis for the fol-
lowing reasons: (1) the URS1 site is placed much fur-
ther upstream compared to all other genes; (2) the mutual
distance between URS1 and UASH sites is 336, which
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Table 2. DNA binding information for URS1 and UASH. Binding sites and positions for eleven gene upstream regions from yeast are shown. All positions are
relative to the annotated translation start sites of respective genes. Distances between binding sites are given. In boxes on the right are given the mean (µ) and
standard deviation (σ ) of distances between URS1 and UASH binding sites. Statistics are given in separate boxes for group 1 (genes 1–5), and group 2 (genes
6–10), and group 1 and 2 taken together

is substantially larger than that in any other genes in the
set; (3) in all cases other than HOP1, URS1 site is down-
stream compared to UASH. These reasons make HOP1 an
exception as far as positioning of the two sites are con-
cerned. The average distance between URS1 and UASH
sites in the remaining 10 genes is 80 nucleotides with a
standard deviation of 67 nucleotides. Since Co-Bind per-
formance decreases when the distance between two sites
is large, we wished to see whether the program would be
successful in detecting both URS1 and UASH sites from
the remaining 10 genes where the distance between sites
is smaller compared to the HOP-1 gene. If Co-Bind did
identify those sites effectively, HOP1 would then be in-
cluded in the training set. Based on average distance be-
tween binding sites, the 10 genes can be divided equally
into two groups of five genes each. The average distance
between URS1 and UASH sites in group 1 (genes 1–5,
Table 2) is much smaller (26 nucleotides) than the aver-
age distance between sites in group 2 (genes 5–10) (133
nucleotides).

Alignment of mapped binding sites using Consensus
indicate a length of 10 and 7 would be appropriate
for URS1 and UASH sites respectively while searching
for those patterns in upstream regions. We aligned the
experimentally reported sites by the Consensus program
in order to determine an appropriate length of the binding
sites, because the factor binding sites are usually mapped
using a multitude of techniques including DNase and
hydroxyl radical footprinting methods which frequently
overestimate binding site lengths. All URS1 sites were 12–
13 long (Table 2), but appeared to have a highly conserved
GCCGCC core. Most UASH sites were longer than 14
nucleotides, however, a site of length 8 is reported for
HOP1 gene in SCPD. The alignment gave a consensus of

T(A/G/T)GCCGCCTA (Information content in nats, IC =
8.1) for URS1 and TTTGGAG (IC = 4.2) for UASH when
considering sites from all 10 genes; TAGCCGCC(G/T)A
(IC = 6.8) and TT(C/T)GGAG (IC = 3.9) for the same
sites when considering only the five group 1 genes. Thus,
the UASH site pattern is significantly weaker compared to
URS1.

Consensus, MEME, Gibbs Sampler and ANN-Spec
were run on the promoter regions of (a) all 10 genes, or
(b) group 1 genes, with appropriate pattern lengths (10
for URS1 and 7 for UASH); only the positive strand of
DNA was included in the search. In either case, binding
site pattern for URS1 was efficiently obtained. URS1 sites
were deleted from the promoters and the programs run
again to identify a second pattern. However, the UASH
site pattern was not obtained. Data for group 1 genes is
shown in Table 3.

We realized physical deletion of URS1 sites can in-
troduce an artificial pattern in the sequences if regions
around the deleted sites are conserved. To check whether
this leads to the failure in programs identifying UASH
sites, we observed different program runs from Consensus
and MEME. Consensus allows the user to ignore specific
portions of input sequences (here, URS1 sites) while
searching for a pattern, and the MEME program allows
the user to search for two (or more) non-overlapping
patterns from a given data set. These results (not shown)
indicate deletion of URS1 sites did not lead to artifactual
failure in identification of the UASH pattern from pro-
moter sequences. The UASH site pattern is too weak to
be identified from the promoter regions.

Co-Bind was able to efficiently identify both URS1 and
UASH patterns from group 1 genes. The Co-Bind program
was initially run on the promoter sequences of all 10

616



Identifying target sites

Table 3. Pattern identified from the upstream region of 5 group 1 genes.
For ANN-Spec, as in Table 1, the consensus from the weight matrices for
top ten scoring runs are shown. Results which match the consensus pattern
for known sites are marked with ∗. For Co-Bind, consensus patterns from
the two different weight matrices are shown for top ten scoring runs. Eight
times out of ten both URS1 and UASH patterns are identified correctly by
Co-Bind

Co-Bind
GCCGCCGACA*
TGGCCGCCGA*
TGGCCGCCGA*
GGCCGCCTAA*
GCCGCCCAAA*
AGCCGCCGAA*
AGTCGAGTAC
AGCCGCCGAC*
AGCCGCCGAC*
ATAGCCGCCG*

TTCGGAG*
TTTGGAG*
TTCGGAG*
GTTCGGA*
GTTCGGA*
TTGGAGT*
GCGCCAT
TTCGGAA*
TTGGAGT*
CTCGGAA

8

Consensus            TAGCCGCC(G/T)A*     GCGCCAT

MEME                   GCCGCCCAAG*          GCGCCAT        

Gibbs Sampler      TAGCCGCC(G/T)A*     AGAAAAC

Ann-Spec
TAGCCGCCGA*
TAGCCGCCGA*
TAGCCGCCTA*
TAGCCGCCGA*
GCCGCCGAAA*
GCCGCCGAAA*
GCCGCCGTAA*
GCCGCCCTAA*
GCCGCCCAAA*
GCCGCCGACA*

10

Pattern 1 Pattern 2

AGCGCCA
AGCGCCA
GCGCCAG
AGCGCCA
AGCGCCA
GCGCCAG
AGTTGAG
TAAACGG
AGTTGAG
GCGCAAG

0

 Identified
    Patterns

Programs

genes. Again, only the positive DNA strand was included
in the search. Length of binding patterns to be identified
were set to 10 and 7 respectively. In each sequence,
the second perceptron was allowed to sample for sites
within a distance of 200 nucleotides upstream of the site
sampled by the first perceptron, since all UASH sites
were within that distance upstream of URS1 sites. While
using all 10 genes, the first perceptron efficiently identified
the URS1 pattern but the second perceptron did not
identify the UASH pattern (data not shown). Co-Bind was
consequently run only on group 1 gene upstream regions.
In each sequence, the second perceptron was allowed
to sample for sites within a distance of 50 nucleotides
upstream of site sampled by the first perceptron, since
in this set, all UASH sites were within 50 nucleotides
upstream of URS1 sites. Both URS1 and UASH sites were
identified in this case with high sensitivity. The results
of program runs on group 1 gene upstream regions are
summarized in Table 3.

5.3 Identification of translation initiation sites
The thermodynamic principles on which Co-Bind is based
can be applied to other cases of cooperative, sequence-

specific macromolecular interactions. Below we show,
from a group of E.coli gene upstream regions, Co-Bind
can identify the translation initiation sites by combining
the sequence signals in the start codon and ribosome
binding region.

From a purely sequence recognition point of view
translation initiation is analogous to recognition of DNA
binding sites by two cooperatively acting TFs. Here,
the two binding components, the initiator tRNA and
ribosome (or 16S ribosomal RNA), utilizes the sequence
information in the mRNA start codon and the Shine–
Dalgarno (SD) sequence (Shine and Dalgarno, 1974) to
recognize the correct translation initiation sites (Gualerzi
and Pon, 1990). The cooperativity between the two mRNA
binding components can be imagined to be mediated
by the ribosome itself and the Initiation Factors (IFs)
(Gualerzi and Pon, 1990). Individually, the sequence
information in either the start codon or the SD may be poor
for the binding events to occur and formation of the pre-
initiation complex. However, the combined information in
the start codon and SD sequence along with an optimal
distance range between the two sites are sufficient for
recognition of the initiation sites, and effective binding of
the initiator tRNA and ribosome for translation initiation
(Barrick et al., 1994).

Though the binding event involves the mRNA, the
sequence information required for the mRNA binding is
encoded in the DNA. Consensus, MEME, Gibbs Sampler
and ANN-Spec were run on 50 long DNA sequences from
30 randomly chosen E.coli genes (−25 to +25, relative
to annotated start sites). Positive strand of DNA was used
as input. We used searching lengths of 3 (corresponding
to the start codon) and 6, corresponding to the most
conserved region of SD sequence, AGGAGG (Ringquist
et al., 1992). With searching length 3, most programs
efficiently identify the ATG start codon. When pattern
searching length was 6 all program results included the
ATG start codon (Table 4A). The start codons were then
deleted from all 30 sequences and programs re-run. None
of the programs were able to find the SD region from
the sequences. We verified that deletion of the more
conserved ATG sites were not responsible for artifactual
failure in identification of the SD pattern using several
Consensus and MEME runs. So, the SD region appears to
have insufficient information to be detected by the above
programs.

Co-Bind was run on the same sequences. As before,
only the positive strand of DNA was used, and lengths of
patterns to be identified were set to 3 and 6 respectively.
In each sequence, the second perceptron was allowed
to sample sites within 15 nucleotides upstream of sites
sampled by the first perceptron. This is because, in
E.coli most SD regions are located within 15 nucleotides
upstream of the start codon (Ringquist et al., 1992). Out
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Table 4. Recognition of translation initiation sites. (A) ‘First pattern’
indicates 3 or 6 long patterns identified by different programs from the 50
long E.coli sequences. ‘Second pattern’ indicates patterns identified from
the data upon deletion of ATG start sites from the sequences. Patterns are
consensus representations of weight matrices produced by the programs. For
ANN-Spec, all top ten scoring runs were consistent and are represented by
only one consensus sequence. (B) Co-Bind results from E.coli sequences.
Top four of Co-Bind runs identified both the start site and the SD region
correctly. Consensus from the two weight matrices from these four runs are
shown

ATG          AGAGGA
ATG          AGGAGT
ATG          AGGAGT
ATG          AGGAGT

First Pat.   Second Pat.
Table 4B

 3-long 6-long

 Identified
    Patterns

Programs

First Pattern
Second Pattern

Consensus                ATG          CATGAA        TTT(G/T)T(C/G)

MEME                     ATG          ATGAAA              TTGTTG     

Gibbs Sampler         ATG          ATGAAA        TT(G/T)TT(C/G)

Ann-Spec                 AAA          ATGAAA             GAAAAA

Table 4A

of the top scoring 10 runs, the four highest scoring runs
yielded the correct patterns for both the start site and SD
region (Table 4B), and for those runs, both sites were
correctly identified in all individual sequences.

5.4 Comparison of Co-Bind and BioProspector
results

Since BioProspector (Liu et al., 2001) is the only other
available method for identifying two closely placed pat-
terns in sequences, we compared results of Co-Bind and
BioProspector program runs on yeast semi-artificial data
sets where two different artificial motifs were implanted
in each sequence of the set. BioProspector allowed a
maximum distance of 50 nucleotides between two binding
site motifs, so it was run only on those data sets where
the distance between two implanted sites were either 25
or 50 nucleotides. Both strands of DNA were included
in the search and the expected frequency of either motif
was set to one per sequence. Whereas Co-Bind identifies
both implanted patterns correctly from these training
sets (Table 1B), in most cases no statistically significant
patterns were obtained by BioProspector. In no cases did
BioProspector identify both patterns correctly. In one
instance one binding site pattern was identified correctly
(viz. AATCGCGTTA where its mutation rate was 0.18)
(details not shown). In BioProspector, significance of each
motif found is judged based on a motif score distribution
estimated by a Monte Carlo method. Only those motifs
with scores greater than five standard deviations above
the motif score distribution mean are reported by the

program. We decreased the threshold score for motif
reporting from five to three standard deviations above the
mean. This did not increase the number of correctly iden-
tified patterns, and again, in no case were both patterns
identified correctly. Thus, when tested on identical train-
ing sets derived from yeast sequences, Co-Bind shows
significantly improved performance over BioProspector
in identification of closely positioned sequence motifs.

6 DISCUSSION
6.1 Information content and binding energy
Information content of binding sites may be directly
related to the binding energy of TFs to those sites (for
a review see Stormo and Fields, 1998), and thus to the
objective functions we define in equations (5) and (8).
It has been shown that in random genomes with no
compositional inhomogeneities, where the probability of
observing a site can be approximated by the genome base
priors, the average binding energy of a TF to a collection
of its binding sites is related to the information content,
Isites, of an alignment of those sites by the equation:

〈�G〉 = −RT (Isites) (10)

Isites = b,k f (b, k) ln f (b,k)
p(b)

, where, p(b) is the genome
composition for each base, and f (b, k) is the fraction
of each base present in each position, k, of the site
(Stormo, 1998). In the case where binding of two TFs
are considered, suppose the average binding energy of one
TF is given by: 〈�G1〉 and that of the other is given by
〈�G2〉. The average combined binding energy may then
be given by the sum of the binding energies, 〈�G1,2〉 =
〈�G1〉+〈�G2〉 = −RT (I1 + I2). This would be the case
if there were no uncertainty in the positioning of binding
sites with respect to each other. However, in a case where
there is such uncertainty, the above combined binding
energy is an overestimate, since the positional uncertainty
has not been taken into account.

6.2 Positional uncertainty and spacing between
sites

If the second site could be located anywhere within a
window of J nucleotides of the first site, the loss in
information due to this positional uncertainty can be given
by (Schneider et al., 1986):

Ipos = −
∑

J

1

J
ln

(
1

J

)
= − ln

(
1

J

)
= ln(J ) (11)

and the average combined binding energy can be given by:

〈�G1,2〉 = 〈�G1〉 + 〈�G2〉 − 〈�Gpos〉
= −RT (I1 + I2 − Ipos). (12)
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The objective function defined for Co-Bind is directly
related to the combined binding energy (equation (8)).
Hence, the smaller the value of J , the greater the combined
binding energy and the greater is the maximum value of
objective function expected from the training data. This
consequently means the perceptron weights will be better
able to define the two binding site patterns in the training
set if J is small. Equations (10)–(12) are true only for
random genomes, however, they may explain why the
sensitivity of correct answers from Co-Bind decreases
when the binding sites are further apart (in semi-artificial
data Table 1b, or in case of URS1 and UASH sites).

Coordinate positioning is an important aspect of com-
binatorial DNA binding by TFs (Fickett, 1996; Wasser-
man and Fickett, 1998; Wagner, 1999). Results of Co-Bind
show that weak binding sites are more efficiently identified
where binding sites are located close together. In some in-
stances, positional constraints for DNA binding sites of
cooperatively acting TFs have been observed to be much
more stringent (Fickett, 1996). Thus, whereever possible,
imposing such positional constraints on the two percep-
trons may improve the sensitivity of binding site identifi-
cation by Co-Bind.

6.3 Expectation of pattern identification
The amount of information needed to identify γ sites
out of a possible � may be given by: Iγ = − ln

( γ
�

)
(Schneider et al., 1986). In semi-artificially generated test
sets, binding sites are 10 long, occur once in every 500
long sequence and may be placed in either of the two DNA
strands. In this case, only one out of possible (491 ∗ 2 =)
982 positions could be the starting position of a real site
(thus, γ = 1 and � = 982). The average information
required to find sites is then: − ln

( 1
982

)
or, 6.8 nats.

For semi-artificial sequences, Table 1a shows, only those
patterns which have more than 6.5 nats in information are
identified efficiently by multiple programs.

Now we describe a relationship between information
content of binding sites, spacing between them and
expectation of pattern identification. For the same data-
set as above, we ask what is the amount of information
needed to identify the second site, having found the first.
Let the maximum permissible distance between two sites
be D nucleotides. The total window length, J , within
which the second site can be located, is equal to 2D,
since ordering of the two sites with respect to each other
is random (i.e. the second site can be placed in either
direction, upstream or downstream, of the first site). The
loss of information due to the uncertainty in the location
of the second site with respect to the first is: − ln

( 1
J ) or

− ln
( 1

2D

)
(equation (11)). Also, the second site can be

placed on either of the two DNA strands with respect to the
first. The loss of information due to the uncertainty in the
DNA strand, is − ln

( 1
2

)
. Thus, the minimum amount of

information required to detect two sites within a distance
of D nucleotides of each other is given by:

Ireq = − ln

(
1

982

)
− ln

(
1

2D

)
− ln

(
1

2

)
(13)

The above arguments are exactly valid for random
genomes, and is only an approximation for non-random
genomes. However, at least qualitatively, they give an
idea about how much information might be required to
identify patterns in a given set of sequences, and how
much spacing variability can be allowable before we start
failing to identify the signals for binding sites.

Table 5 shows, for a pair of binding site motifs, the
amount of information content required for binding site
identification (Ireq), the amount of information actually
present in the binding site patterns (Iactual, which is the
sum of information contents of individual patterns), and
the efficiency of identification of those binding sites using
Co-Bind. In theory, one would expect the efficiency of
binding site identification to decrease with decreasing Idiff
(defined as Iactual − Ireq), and the efficiency to be high
when Idiff is positive and poor when Idiff is negative.
We see in Table 5, as Idiff decreases, the efficiency of
binding site identification also decreases, and when Idiff
is a large negative value (e.g. −2.5) efficiency of binding
site identification by Co-Bind is poor. However, in a few
instances Co-Bind is able to identify sites efficiently even
though Idiff is a negative value (e.g. −0.4 and −1.1). The
likely reasons for this are: (1) the genome is non-random;
and (2) Co-Bind is not designed to obtain patterns with
maximum information content. Co-Bind partitions against
the whole genome in order to identify sites with high
specificity for the training set. In the yeast genome there
might be some frequently occurring sites (e.g. poly-A or
poly-T) with high information content in all gene upstream
regions. Though information rich, these sites are thus not
specific for the training set and are not identified by Co-
Bind. The implanted sites may have lower information
content but could be more specific for the training set and
hence are identified by Co-Bind.

Where individual patterns have less information, the
combined information content of two weak patterns
becomes high enough for identification. In semi-artificial
data sets, the information content required to identify
one 10 long binding site motif by itself (without the
second site) is 6.8 nats. But in the example where two
sites are present together and the maximum distance
between the two sites is D = 25 nucleotides, individual
binding sites can have 5.7 nats of information and still
be identified successfully when searched for their joint
occurrence (D = 25 and J = 50, giving Ireq = 11.4
nats (equation (13))). For URS1-UASH regulated genes,
the information content required to identify individual
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Table 5. Information content of binding sites and expectation of pattern
identification using Co-Bind. The training set used is where two patterns,
AATCGCGTTA and GGATATATCC, with mutation rates 0.33 and 0.37
respectively, are implanted in 30, 500 nt long, yeast sequences (refer to
Table 1B, last row). Information contents for the two patterns are 5.8 and
5.2 respectively. Maximum possible distance (D in discussion) between the
two sites is given along with information content (IC) and efficiency (Eff) of
pattern identification with Co-Bind. Ireq is the information required to find
both sites, as calculated from equation (13) in the discussion Section 6.3.
Iactual is the sum total of information content contained in the two binding
site motifs. Idiff = Iactual − Ireq. Efficiency of Co-Bind in determining both
sites correctly is taken directly from Table 1B (last row)

Max Dist

 Co-Bind
Efficiency

diffI

Iactual

Ireq

I.C./Eff
25        50        100        150       200

11.4        12.1        12.7          13.2        13.5

11.0        11.0        11.0          11.0        11.0

-0.4         -1.1         -1.7          -2.2         -2.5

10            8              4              4              1

site patterns from the 300 long sequences is roughly
5.7 nats. That may explain why UASH sites cannot be
identified unless in conjunction with URS1 sites using Co-
Bind (note, alignment of UASH sites gives information
content around 4.0 nats). In the case of E.coli sequences,
we observe from Co-Bind results which identify both
patterns correctly, the information content of both ATG
sites and the SD sequences are around 3.5 nats. The
minimum information content required to identify sites
from that training set is about 3.9 nats. ATG start codons
are frequently identified by other methods but not the
SD region (Table 4). Here again, by taking advantage
of combinatorial information content, Co-Bind is able to
identify both sites correctly. Thus Co-Bind models the
situation where binding of individual factors to respective
binding sites may be weak, but cooperativity between two
factors lead to efficient binding by increasing complex
stability.

6.4 Future improvements
Currently, specific pattern lengths need to be input in
the program. Automatically determining the appropriate
binding site lengths for the patterns should be very useful.
As is common with gradient descent approaches, the
objective function can get stuck in a local minimum.
Hence, the program is run multiple times and top scoring
runs are considered. Several methods for avoiding such
a problem are known (Baldi and Brunak, 1998, and
references therein), some of which could be implemented
and examined.

7 CONCLUSION
Results of Co-Bind presented indicate that it is able
to model the synergy between the binding factors. It
can identify weak patterns, which cannot be identified
by other available methods, by combining the sequence
information in those patterns. Currently Co-Bind models
cooperative binding by two factors, but extension to more
than two factors is possible. Given the universal nature
of transcriptional regulation by combinatorial binding of
TFs, Co-Bind could prove to be useful in discovering
new regulatory sites for synergistically acting TFs and
understanding transcriptional regulatory mechanisms. The
principles of macromolecular binding on which Co-
Bind is based are general, hence, it may be extended
beyond the scope of protein–DNA binding to other
cases of macromolecular interactions, as evidenced from
identification of translation initiation sites in E.coli.
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