VOLUME 17

NUMBER 7

JULY 2001
Electronic edition http://www.bioinformatics.oupjournals.org PAGES 608-621

ldentifying target sites for cooperatively
binding factors

Debraj GuhaThakurta and Gary D. Stormo

Department of Genetics, Washington University School of Medicine,
4566 Scott Avenue, Campus Box: 8232, St Louis, MO 63110, USA

Received on December 22, 2000; revised on February 27, 2001; accepted on March 6, 2001. GO BACK

CLOSE FILE



http://www.bioinformatics.oupjournals.org

Abstract

Abstract

Introduction
Algorithm and. ..
Data

Motivation: ~ Transcriptional activation in eukaryotic organisms normally [

requires combinatorial interactions of multiple transcription factors. Though [

several methods exist for identification of individual protein binding site |-
patterns in DNA sequences, there are few methods for discovery of bindingfyearaess
site patterns for cooperatively acting factors. Here we present an algorithm,
Co-Bind (for COperative BINDing), for discovering DNA target sites for

cooperatively acting transcription factors. The method utilizes a Gibbs
sampling strategy to model the cooperativity between two transcription factors
and defines position weight matrices for the binding sites. Sequences from bot
the training set and the entire genome are taken into account, in order to
discriminate against commonly occurring patterns in the genome, and produce
patterns which are significant only in the training set.

Results: We have tested Co-Bind on semi-synthetic and real data sets to
show it can efficiently identify DNA target site patterns for cooperatively
binding transcription factors. In cases where binding site patterns are weak
and cannot be identified by other available methods, Co-Bind, by virtue of
modeling the cooperativity between factors, can identify those sites efficiently
Though developed to model protein—DNA interactions, the scope of Co-Bind
may be extended to combinatorial, sequence specific, interactions in othe
macromolecules.
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Abstract

Introduction

Understanding the complex transcriptional regulatory network is an interesting itk
and challenging problem. Towards that goal the elucidation of the basic
regulatory apparatus, which is organized in the form of arrays of transcription Jl
factor (TF) binding sites on DNA, is of primary importance. Due to the
laborious and time consuming procedure of elucidating TF binding sites
through experimental methods, computational methods for identifying TF
binding sites is an active area of research. Several methods for local multiplg
sequence alignment have been used to address the problem of identification q
individual TF binding site patterns, e.g. Consenddsr(z and Stormo1999),
MEME (Bailey and Elkan 1994, Gibbs Sampler lawrenceet al, 1993,
ANN-Spec Workman and Stormd@000. In many cases where binding sites
for TFs are known from experiments, these programs have been shown to yiel
the known binding site patterns, indicating that the results of these methods
can be useful in discovering unknown TF binding sites from a collection of
sequences believed to contain a common binding site pattern. With the adve
of technologies like DNA microarrayDeRisi et al, 1997 Lockhartet al,
1996, SAGE (Velculescuet al, 2000 and various hybridization methods
which can measure the mRNA expression levels of different genes, such &
collection of sequences can now be readily obtained. Genes which have simila
expression profiles, or are expressed in specific contexts, may be assumg
to have similar transcription mechanisms governing their expression. Hence
upstream promoter regions of these genes might contain the binding sites fo
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. . . . . Abstract
the same transcription factors. Application of local multiple sequence alignment

methods on a set of unaligned promoter regions from such genes can help Algorithm and.
identify novel TF binding sites. Data

Detailed experimental work on several individual genégKett 1996 Methods
Weintraubet al, 199Q Yuh et al,, 1998 Zhong and Vershqrl997) elucidate Results
that the transcription regulatory mechanism in eukaryotes, and especially irsEaeen
higher organisms, is inherently much more complex than moderation of gengEEEItEE
expression levels by binding of one single TF to the gene promoter region. In
many (if not most) cases, transcription factors do not work alone, regulation
results from thecis-regulatory action of several factors. TF binding sites are
often organized in functional groups called modul¥sh( et al, 1998 for a
review seeWerner 1999 where TFs bind the promoter regions and regulate
transcription as synergistic (cooperative) or antagonistic p&iraope and
Davidson 1997 Fickett 1996 Yuh et al, 1998 (for more examples see the
COMPEL databaseKel et al, 1995. In synergistic or cooperative binding,
simultaneous interactions of two factors with closely situated target sites ca
result in a non-additively high level of a transcriptional activation, whereas in
antagonistic binding two factors interfere with each other so that competition
for overlapping sites leads to a mutually exclusive binding of TFs (definitions
taken fromKel et al,, 1995 http://compel.bionet.nsc.ru/compel/compel.html
Cooperative binding of factors to DNA and formation of a ternary complex of
protein—protein—DNA has been shown in many ca$esiftraubet al., 1990
Morenoet al, 1995 Fickett 1996 Muhlethaler-Motteet al., 1998.

Introduction
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Computational methods have recently begun to address these issues in ge fosvact

regulation. Since cooperatively acting TFs need to be placed in close proximit
to each other, the joint occurrence of two known binding site motifs within [
some distance constraints has been used for identification of transcriptiorgyjm
factor binding modulesKlingenhoff et al., 1999. Methods have shown that Results
utilization of information about coordinate or close positioning of known [y
transcription factor binding sites present in tieregulatory elements of genes GEECIES
expressed in a specific context lead to more accurate prediction of novel gene
which are likely to involve similar regulatory mechanism&asserman and
Fickett 1998 Wagner 1999. Thus, given two (or moreknownbinding site
motifs and the information about their coordinate positioning, several methods
can efficiently predict new regulatory regions involving those motifs. However,
few methods exist to address the problendsicoveringtarget site motifs for
cooperatively binding TFs. Very recently, one method, Bio-Prospector, has bee
described for identification of two-block motif&i( et al, 2001) which could
potentially be used for identification of closely located binding site motifs for
two cooperatively acting TFs.

Here we present a novel computational method, Co-Bind, for discovering
binding site motifs for cooperatively acting factors. Our method models
cooperative DNA binding by TFs by maximizing the joint likelihood of
occurrence of two binding site motifs, in the process describing the Position
Weight Matrices (PWMs) for the two binding motifs. Where the affinity of a
given factor for a target site is low, cooperative interaction with another factor
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placed at an appropriate distance on tigregulatory region can increase

both complex stability and specificity for the protein—-DNA interaction. When
addressing this problem computationally, this issue can be translated as follow <
where the probability of observing one binding site is too small the joint FYIEE.
probability of observing two binding sites may be high; or, from an information [
theoretic point of view, when the information content of a binding site motif is [SeTea
too small the information content of both binding site motifs taken together may GESEIES
become high enough for detection. We have tested Co-Bind on semi-artificial
and real data sets from yeast. It is shown that the method can not only identi
DNA binding site patterns within certain distance restrictions, but by virtue of
modeling the cooperativity is also able to identify weak patterns for two TFs
which would not have been identified if searched for individually using existing
programs. Co-Bind may be applied to other cases of combinatorial, sequenc
specific, macromolecular interactions. We show that Co-Bind can effectively
identify weak sequence signals for translation initiation inEseherichia coli
genome.

The relationship between information content of binding sites, spacing
between the sites and expectation of binding site detection is discussed fro
an information theoretic point of view.
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Algorithm and implementation
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Two sequence data sets are given viz. the positive or training set, whichiidQUuSES
represents a set afs-regulatory elements, and a background set representing K
the genome. The positive set may be a collection of sequences believed tGEl
contain binding sites for two cooperatively binding TFs. The problem is to [iitiias
identify the binding site patterns for two TFs which bind cooperatively in the
positive set. An objective function, which is derived from the thermodynamics
of protein—DNA binding, is optimized to obtain PWMs for the two different
DNA binding site patterns. In the objective function, sequences from both the
training set and the genome are taken into account to discriminate agains
commonly occurring patterns in the genome and obtain patterns with highe
specificity for the training set.

Overview

Description of the PWMs

A position weight matrix has previously been found to be a good model for
describing protein binding sites in DNAS{ormq 2000. An | long DNA
binding site pattern may be described by>d 4veight matrix, with four weights
(for four DNA nucleotides) per pattern positioRig. 1A). Let us assume each
weight in the matrix is the binding energy contribution of each nucleotide at
a particular pattern position. With the additional assumption that protein—DNA



contacts at individual residue positions in the binding site are independent oM

each other Berg and von Hippel1987, the total binding energy for a TF
molecule to a particular site is given by:
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where,w denotes the PWM weights, denotes the inputs from the site (DNA
bases at different positionk)ranges over thé positions of the siteh ranges
over all four DNA bases. A simple weight matrix may also be looked upon as
a simple, single layer, neural network (perceptrdstp(moet al., 1982, with

one layer of weights between the input (site sequence) and the output (binding
energy of TF to that site). Here, two weight matrices are used to represent th¢
binding sites for two TFs and their combinatorial binding energy is given by the
sum of individual binding energie&ig. 1B).

Description of the objective function

Derivation of the objective function is based on thermodynamics of DNA—
protein binding. We first describe the objective function for identification of
one binding site pattern, which is then extended to the two pattern problem. The
objective function the for one site problem has been described b&tardinhan
and Stormp2000, but is described here again in brief to facilitate the derivation
of the objective function for cooperatively acting TF binding sites.
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Flg. 1. (A) Schematic representation of a single DNA weight matrix or preceptopm,. denotes the weight for
pattern positiork, and basé. Hj is the output score from the PWM or perceptron for a given sub-sequence starting at
position j in a particular sequence. (B) Schematic representation of two perceptrons for binding sites for cooperatively
binding factors. Two perceptrons are allowed to sample non-overlapping sites from two different offset positions starting
atj andj’ on a particular sequencet, the cooperative output, is given by sum of individual outputs from the two
perceptrons.
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Suppose we are given two sequence sets, viz. positive sequense aetl
background sequence sét,Lets;j, be a sub-sequence from any sequefce Algorithm and...
in the training set with offsej. Instances o§j may be present multiple times Data
in both the positive and background sef;is the likelihood of findings;j in Methods
the genome. Let us assume a TF molecule is bound somewhere in the genomjEEsms
The likelihood thatnyof the sub-sequencsgis bound is related to the binding Discussion
energy,Hj, of the factor tcs; and probability of observation &f. By following References
maximum entropy distribution and Boltzmann equation this likelihood is be
given by:

Introduction

_ Pj .e_HJ' . Pj .e_HJ'
D -

Fj (1)
where,Y = Y " Pje i is the partition function over the distribution of
all sequences assurinE? Fi = 1, n denotes the total number of all
sub-sequences, liksj, in the genome. The likelihood thaine particular
instanceof s; is bound is thus(%).

Suppose: (ay;; is the binding site for the TF in sequen&g (b) there are
total of p, sequences, lik§ in the training set, (c) for each of these sequences
there is only one binding site starting at offset positipn(d) binding sites in
all p sequences are occupied. The probability that a TF molecule is bound to itg
site,s;j; in sequences, is given by:

Fj e Hii

bi:P—;: y (@)




The probability that a TF molecule is bound to its sitesirerysequence of the [l

positive set is given by the product of individual probabilities:
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p —Hj, BEE]
B = 1‘[ b =] @') -T1(5) 3) -
i=1 ! i=1 Results
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Our objective is to maximize this probability. We can instead maximize the
logarithm:

References

InB =

p e_Hji p
=D Hy)—p-InY @
i=1

To have an expression independent of the number of sequences in the positi
set, the objective function is defined as follows:

1 p
= S (Hp —inY ©)
i=1

When considering binding sites for cooperatively interacting factors, we assume
the two factors areimultaneouslypound to different sites or sub-sequences in
each of the positive set sequences. The partition function in this case may b

given by:
=33 (P -eMixpy, e (6)
i,/
where, superscript ‘c’ is foicooperative binding,j] and j/ are offsets for
two different, non-overlapping, sub-sequences in a sequd?jcand P;, are



the probabilities of observing these sub-sequences in the genidmend Abstract

HJ-’, are binding energies of the two TFs to these sub-sequemcesms
over all sequences in the genome,and j7 sums over all possible pairs Data
of non-overlapping sub-sequences in each of these sequences. Analogous FYim
(Equation 2, the probability that both factors simultaneously occupy their [
respective binding sites;; ands;j, in a sequence§, of the training set, may Discussion
be given by: References
b e_HJi .e_Hi/’i e_(Hji_'—HJ'//i) e Hi

[ = yC = yc = yc (7)
The probability that both sites are simultaneously occupiedllirsequences
of the training set, is thuB® = []°(b%). Our objective is to maximize this
probability, hence, analogous to the one site problem, the objective function to
be maximized is given by:

Introduction

Algorithm and . ..

p
Ut = —;Z(—Hi) —Iny* (8)

i=1

Training the PWMs

The PWM or perceptron weights are fit to the training data by a gradient descen
approach. Prior to the start of training we initiate two PWMs with an arbitrary
set of weights. The following steps are then followed to train the perceptron
weights:




(1) Calculate individual objective functions for the two perceptrobs, Abstract

and U, following (Equation 9, and the two site cooperative objective
function, i/, using Equation §. (While estimating the partition functions Data

Y or )¢, rather than calculating over all background sequences, one cargyism
sample a large number of sites at random to approximate the background S
Set current/® to US,,, and current perceptron weights to best weights, i.e. [PETEasy
w1 = wipestaNdwr = wopesi The best weights represent best possible BB
descriptions for the two binding sites.
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(2) Select two non-overlapping sites from each of the training set sequences
by Gibbs samplinglawrenceet al, 1993 using the two representative
weight matrices.

(3) Update the perceptron weighig andw, by gradient descent following
the equations:

sU1
Awi=n1- (—) — A1 w1
dw1
sU
Awp =1 - (—2> — A2 w2 9)
Swo

where,n1 andn; are the step sizes; andi, are decay parameters.

(4) Recalculate individual objective functiong; and U, and the two site
cooperative objective function{°. If current/ is greater thai(s,,, set:
Z/{r(r:]ax =US; w1pest= w1; andwopest= w2;
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(5) Iterate through steps 2—4 for a fixed number of times. Régyt and best
weights,w1best @2best
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Implementation Methods
Results
Co-Bind was implemented in C and was developed on Sun workstations [,

running Solaris. The code is portable and can be compiled and run under th@ SN
Unix environment. A typical program run on 30 training set sequences, eac
500 nucleotides long, (background sequence setafif00, 500 nucleotide long
sequences) takes3 min on a Sun workstation with a 296 MHz processor; the
memory requirement never exceeds 25 MB. The computation tin@(i¢),
whereN is the number of sequences in the training set, because we do a fixeq
number of iterations rather than wait for convergence.
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Semi-artificial sequence data was generated for testing the program. ThirtyEUEUIE
ORFs were chosen from the yeast genome at random. Upstream regions qaS
these genes (from500 to—1 relative to the translation start site) were taken. |[EEEEEEL
Various sequence patterns were implanted in these sequences to yield differe JieNIgS
training sets. The background set consisted of identical regieB8( to—1)
from all ORFs in the yeast genome. All yeast ORF upstream sequences wer
obtained from the yeast promoter database, SGPID &nd Zhangl999 (http:
/lcgsigma.cshl.org/jiajv/ Several different training data sets were prepared:

(1) Two sequences of length ten were arbitrarily chosen, AATCGCGTTA
and GGATATATCC. For each, an alignment of thirty sites was initially
generated, each element of the alignment being an exact copy of thg
consensus. The alignment was then mutated a number of times dependin
on the specified mutation rate. The number of mutations introduced in the
alignment is given byr(- p - I), wherer is the mutation ratep is the
number of sequences in the alignment and the length of the sites.
Substitution probabilities are defined by the nucleotide priors for yeast
(0.315 for As and Ts, 0.185 for Gs and Cs) and reflexive substitutions are
disallowed (i.e. once a patrticular nucleotide of an element is mutated, its
not mutated again). Mutation rates for AATCGCGTTA alignment varied
from 0.18 to 0.33 and that for GGATATATCC ranged from 0.25 to 0.37
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Abstract

to give alignments with varying degrees of conservation. The information
content of each mutated alignment is givenTable 1A; all information
content values are given in nats (anstead of bits (log). Each instance g
of the mutated alignment for both patterns (henceforth referred to as ajynns
binding site) are then implanted into the thirty positive set sequences in ¥
random orientations and random positions, but within a certain distancej ey
of each other. Since in cooperative binding of TFs binding sites for the REEEES
factors are often located close to each other, the artificial binding sites wers
implanted within certain distances of each other. Several training sets werg
created with the elements from two different alignments implanted within
25, 50, 100, 150 or 200 nucleotides. Care was taken to see the implanteq
patterns did not overlap with each other.
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(2) Training sets were created where elements from only one particular
alignment, corresponding to either AATCGCGTTA or GGATATATCC,
were implanted in the same 30 yeast ORFs.

Data set (1) was generated to test Co-Bind and BioProspdatoref al.,
2007 programs. Data set (2) was generated to check how well the individual
binding site patterns can be identified by other available programs.

Yeast genes regulated by two TFs

In order to test if Co-Bind could identify biologically relevant TF binding
site patterns which would be missed using other pattern finding programs we



obtained four sets of yeast genes which have been experimentally shown to b
regulated by two factors:

(1) A set of eleven genes are regulated by the Cbfl-Met4p—Met28p comple
and Met31p or Met32p in response to methioninan( Heldenet al,
1998. The individual binding site patterns for Cbfl-Met4p—Met28p
complex and Met31p/Met32p can be given by the consensus TCACGTG
and AAACTGTGG, respectivelyvan Heldenet al, 1998. Upstream
regions (700 to—1) were extracted from SCPD for these genes, as the
relevant binding sites in all eleven genes were located in that sequencg
region. The background sequence set containedO to—1 regions from
all yeast ORFs.

(2) Matx 2 protein is involved in a regulatory system that specifies cell mating
type in yeastSaccharomyces cerevisig€hong and Vershgnl1997).
In haploid @ cells and diploid cells, Mat2 interacts with a general
transcription regulatory factor, Mcm1, to repress expression of a-specific
genes. A group of six genes were collected from the SCP (and
Zhang 1999 that were regulated by binding of both M& and Mcm1.
The binding site patterns for Ma2 and Mcm1 may be represented by
the consensuses sequences AATGA(A/C)(A/T)T and CCTAAT(A/T)GGG
respectively. Upstream regions 350 to—1) were taken from SCPD for
these genes, as all relevant binding sites were contained in that region. Th
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background sequence set consisted-860 to—1 regions from all yeast
ORFs.
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(3) SCPD contains five genes which are regulated by transcription factors s
GCR1 and RAP1. GCR1 and RAP1 have been shown to act in concerjiities
to mediate high-level glycolytic gene expressionSrcerevisiagBaker; Results
1991). Binding sites for GCR1 and RAP1 can be represented by consensus
sequences ACCCAGACA(A/T) and GGGCTTCC respectively. Upstream
sequences{700 to—300) were taken from SCPD for these five genes, as
all relevant binding sites were contained in that region. The background
sequence set consisted-e700 to—300 regions from all yeast ORFs.

Discussion

References

(4) In S.cerevisiaenore than 25 characterized genes are expressed only during
sporulation and are referred to as meiotic genes or sporulation-specifig
genes. These genes are in the early, middle, and late expression classs
Most early genes have arggulatory site, URS1, and one of two additional
sequences, UASH or a T4C sitslichell, 1994). URS1 site is required
both to repress meiotic genes during vegetative growth and to activate
these genes during meiosis. UASH and the T4C site also contribute to
meiotic expression. In some cases cooperation between URS1 and UAS
sites has been shown to be required for full induction of expressionZ
et al, 1995. SCPD contains 11 genes regulated by both URS1 and UASH
sites. The URS1 binding site contains a motif with a highly conserved
GC-rich core GCCGCC; the UASH site is not as well conserved. In 10



Abstract

out of the 11 genes URS1 and UASH binding sites are located within
the upstream region300 to—1; we obtained the-300 to—1 sequences
for those 10 genes from SCPD. Background sequence set consisted of thEs=
—300 to—1 regions from all yeast ORFs. Methods
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E.colitranslation initiation sites Discussion
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The entireE.coli K-12 genome sequence and gene coordinates were obtaineq
(http://www.genetics.wisc.edu(Blattneret al., 1997). All genes annotated as
‘hypothetical’ or ‘putative’ were ignored. From the remaining, 30 genes were
chosen at random. The25 to +25 regions (numbering relative to annotated
translation start sites) of these 30 genes were taken for sequence analysis. T
background sequence set consisted of 4000 randomly generated sequences, e
50 nucleotides long. Base priors used for generating the background set wa
same as that d&.coli, 0.25 for all four bases.
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Introduction

Identification of individual binding site patterns 2'90””‘“‘ and..
ata
To check whether the individual binding site patterns can be identified by well FUEGEEE
known methods, several programs were run viz. Conseerszand Stormo Results
1999, MEME (Bailey and Elkan 1994, Gibbs Sampler L(awrenceet al, Discussion

1993 and ANN-Spec \(Vorkman and Storma2000. All programs were run References
with the specifications: (1) length of the pattern to be identified; (2) expected
frequency of binding sites (one site per sequence, unless mentioned otherwise
and (3) appropriate strands of the DNA (just positive, or both positive and
reverse complement) to be included in the search.

The Consensus program identifies a pattern with the highest information
content in a given set of sequences. Version 6.c of Consensus was used a
the top scoring result was reported.

The MEME algorithm uses an expectation maximization algorithm for
finding patterns in input sequences. MEME Version 2.2 was run over the MEME
web-server (see reference). The top scoring result was reported.

Charles Lawrence’s Gibbs Motif Sampler (Version 1.01.009) was used, with
the option ‘site sampler’. 100 different ‘seeds’ or starting points were used,
a maximum of 2000 iterations were performed for each run, and the highest
scoring result was reported.
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Version 1.0 was used. Due to the non-deterministic nature of the algorithm, Abstract

multiple training runs are performed (100), with each run iterating 2000 times.
The results are sorted by their best attained objective function valygs, (see Data

(Equation ). Weight matrices corresponding to the ten highest scoring runs fysmn e
are observed. The binding site pattern is said to be identified correctly in onej- s
of these runs if the consensus from the weight matrix matches the consensus @iEeraes
the known patterns. Results for ANN-Spec are reported in terms of the numbe GEEEIES
of times (out of ten) binding site patterns were identified correctly.

Introduction
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Identification of binding site patterns for cooperative factors

Co-Bind was used to identify target sites for cooperative factors. In order
to optimize the parameters for Co-Bind (viz. step-sizes and decay parameters
(Equation 9), it was run on many artificially generated data sets in which two
different binding site patterns were implanted. The training data sets consiste(
of 30 artificial sequences, each 500 nucleotides long, with two different
binding sites, of several different lengths, implanted at random positions.
The background set contained 3000 artificially generated sequences, each 5(
nucleotides long, but with no implanted sites. Several values of stepssize
(from 1 to 10) and decay factar (from 0.0 to 0.5) were tested. The step-size
determines the extent to which the perceptron weights will move in direction of
the(%) gradient Equation 9 and the decay parameter allows the perceptrons
to retain a fraction of its previous weights (e.g. a decay parameter of 0.1
will allow retention of 90% of previous weights). A large step-size and decay



. M Abstract
parameter allows the perceptron to wander more in sequence space, whil

smaller rates result in more local searches with the final result being more
sensitive to the initial weight settingg/orkman and Storm@000. A step-size Data

of 3 and decay factor of 0.06 for training of both perceptrons seemed tofys e
work well with a wide range of artificially generated training sets (data not [
shown). Hence, all Co-Bind results reported are with these fixed parametersiEertats
We perform 100 training runs for Co-Bind with each run iterating 2000 times. GEEEIES
Runs were sorted by the best attained cooperative objective funifign(see
(Equation §), and the perceptron weights corresponding to the ten highest
scoring runs were observed. Like in ANN-Spec, binding sites are said to be
identified correctly in one of these runs if the consensus from the perceptro
weights match the consensus of known patterns. Results for Co-Bind arg
reported in terms of the number of runs (out of top scoring ten runs) which
identifiedbothbinding site patterns correctly.

Introduction
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The BioProspector prograri( et al, 2001) uses a modified Gibbs sampling
strategy to identify two binding site motifs within certain distance constraints.
The maximum allowable distance between the two motifs is 50 nucleotides.
BioProspector uses zero to third-order Markov background models whossg
parameters are estimated from a given sequence file. The minimum distanc
between the two motifs was set to 0 nucleotides and maximum distance betwee
two motif blocks was set to 25 or 50 depending on the training data set (ses
results). 50 runs were be performed in each case and all statistically significan
motifs were reported.
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Results
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Semi-artificial sequences

Data
Consensus, MEME, Gibbs Sampler and ANN-Spec were run on training LS
data sets, where only one kind of binding site pattern was implanted from @ats
a mutated alignment as explained in the data section. All programs werclus
run with: (1) length of binding sites to be identified set to 10; (2) expected [REias
frequency of sites, one per sequence; (3) both positive and reverse compleme
of DNA sequence included in the search. Several representative results ar
shown inTable JA. Most programs were able to identify the AATCGCGTTA
and GGATATATCC binding site patterns correctly only when the mutation rate
for the alignments were 0.18 and 0.25 respectively.

Low-complexity patterns (e.g. poly-A or poly-T) occur frequently in
promoter regions of yeast. Often they tend to appear as the best results @
pattern finding programs which do not consider the background sequence se
We observe a similar situation with some of our tests. In several instances
Consensus and Gibbs Sampler fail to identify the implanted binding site
patterns, identifying poly-A or poly-T as best patterns instead. ANN-Spec,
by considering both the training and background sets, is able to discriminate
against these commonly occurring patterns and find those which are prese
only in the positive set\Workman and Stormo200Q C.T.Workman and
G.D.Stormo, unpublished observations).

Co-Bind was run on training sets where two different binding site patterns
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were implanted simultaneously. Length of the patterns to be identified were Abstract

set to 10, and both the positive and reverse complement strands of DNA werg
included in the search. As the objective function for Co-Bikd|fation § is Data
closely related to that of ANN-SpeE&¢quation 3, it is useful to compare results  FYIEE—.—-
of the two programs in order to see whether modeling cooperativity between ==sis
binding sites can help in identification of patterns which, by themselves, are toOf R,
weak to be identified. ANN-Spec results show how well binding sites may be GESEIES
identified individually, whereas Co-Bind results show how well a binding site
pattern can be identified in the presence of the othable B).

In cases where the first and second binding site patterns are too weak ftg
be identified by Consensus, MEME, Gibbs Sampler or ANN-Spec, Co-Bind
can identify the implanted sites correctly by looking for two binding sites
within a certain distance of each other. For example, binding site patterns fo
AATCGCGTTA with mutation rates 0.29 and 0.33; and that for GGATATATCC
with mutation rates 0.33 and 0.37 are not identified well by any of the
methods. Presumably, the information in individual patterns is not strong,
but the combinatorial information on both patterns is high enough for their
simultaneous identification using Co-Bind. When binding sites are located closg
to each other (e.g. within 25 or 50 nucleotides) binding sites are identified with
higher sensitivity.

Introduction

Algorithm and. ..
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Table 1. (A) identification of individual patterns. The consensus for implanted patterns are shown along with [RESSSERISE

the mutation rate (r) and Information Content (IC) of the alignment in nats. Consensus from the weight matrices Fa\le[elfi{slssJf-13le B
produced by the Consensus program, Gibbs Sampler, MEME are shown. A pattern is said to be identified correctl
when consensus from identified pattern matches the consensus of implanted pattern with no more than two mismatchg Data

All correctly identified patterns are marked withFor ANN-Spec, the result is given by a number indicating times (out Methods
of top scoring 10 runs) the correct pattern is identified. The weight matrix consensus from all top scoring ANN-Spec

runs are also shown for reference. (B) Results of Co-Bind runs and comparison with ANN-Spec results. ANN-Spec Results
results are from (A). Co-Bind program was run on sequences with two different implanted patterns. Co-Bind results arefptaayrastos
given by the number of timesothimplanted patterns are identified correctly. Criterion for deciding correct results is
same as in (A), i.e. not more than two mismatches between identified pattern consensus and implanted pattern consenJSSIEICSIIEES

Table 1A
Binding Site AATCGCGTTA GGATATATCC
Mutation Rate,r |  0.18 0.29 0.33 0.25 0.33 0.37
I.C. (nats) | 7.61 6.23 5.76 6.57 5.55 522

COnsensus |AATCGCGTTA* | TTTTTCTTTT TTTTCTTTTT | GGATATATCC* TTTCTCTTTT TTTCTCTTTTC

MEME |CcCACGCGTGG | GCGCATGCGC | GCACATGTGC | GGATATATCC: | GGGCATGCCC CTGCCGGCAG

GlbbsSampIer AATCGCGTTA* | TTTTTTCTTT | AAAGAGAAAA | AAAGAAAAAA | AAAGAAAAAA | AAAGAAAAAA

ANN-Spec | 10 2 0 10 4 0
AATCGCGTTA* AATCGCGTTA* AGCTAGCTTT GGATATATCC* GGATATATCC* TTAAGCGGAG
AATCGCGTTA* ATCGCGTTAT* CGGGATTGCC GGATATATCC* GGATATATCC* AGCTAGCTTT
AATCGCGTTA* AGCTAGCTTT CTCGCGGGGT GGATATATCC* GGATATATCC* CTCGCGGGGT
AATCGCGTTA* CGGGATTGCC TGGGGGTACT GGATATATCC* GGATATATCC* CGGGATTGCC
AATCGC A* CTCGCGGGGT GAGTGTTTTT GGATATATCC* AGCTAGCTTT GGGCTAGGAA
AATCGC GGGCTAGGAA CATCATCATC GGATATATCC* CTCGCGGGGT GAGTGTTTTT
AATCGC AGATCGTGAG AGATCGTGAG GGATATATCC* GGGCTAGGAA GAGGAACTTA
AATCGC * CCTGCAAATA GATCATGCTC GGGATATATC* GAGGAACTTA CCTGCAAATA
AATCGCGTTA* AATCCAGAGA GGGCTAGGAA GGATATATCC* CGCCCCTTGC AATCCAGAGA
AATCGCGTTA* AAATAACTTT AAGGATTACC GGATATATCCH AATCCAGAGA CATGATCACC

Table 1B

Implanted Patterns Co-Bind results

. Maximum ible separation
First Pattern Second Pattern POSSID € Sep

between implanted sites
Pattern Consensus| Mut. Rate| ANN-Spec | Pattern Consensus | Mut. Rate | ANN-Spec | 25 50 100 150 200

AATCGCGTTA 0.18 10 GGATATATCC | 025 10 10 10 10 10 10
AATCGCGTTA 0.29 2 GGATATATCC | 025 10 10 10 10 10 10
AATCGCGTTA 0.33 0 GGATATATCC | 0.25 10 10 10 10 10 10
AATCGCGTTA 0.29 2 GGATATATCC | 033 4 10 10 10 10 10
AATCGCGTTA 0.33 0 GGATATATCC | 0.33 4 10 10 9 8 10
AATCGCGTTA 0.33 0 GGATATATCC | 037 0 10 8 4 4 1
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Yeast genes regulated by two factors

Introduction

Out of four sets of genes which are regulated by binding of two factors EalEULEUCEE
(see data), in three cases the patterns for both sites can be obtained frofks
the upstream regions of the genes regulated by them, using one or Mor ki
of the programs—Consensus, MEME, ANN-Spec or Gibbs Sampler, in a
sequential manner. When run on promoter regions of the genes, the progra
first identified the stronger of the two patterns. The highest scoring sites
corresponding to the weight matrix of the first pattern were then deleted from
each sequence in the set. The programs were re-run a second time on t
promoter sequences to identify the second binding site pattern. Binding pattern
which can be identified in this manner include Cbfl-Met4p—Met28p complex
and Met31p/Met32p (in data-set 1); M@ and Mcm1 (in data-set 2); GCR1
and RAP1 (in data-set 3). In all these data-sets Co-Bind is able to identify both
patterns with high sensitivity (data not shown). In data-set 4 one of the patterns
is not identified using any other method except Co-Bind. Detailed results for the
fourth data-set are described below.
Table 2summarizes the information about the genes regulated by both URS
and UASH sites; the experimentally reported sites, the position of sites relative
to the translation start, and the distance between the sites. All of the above
information were obtained from SCPD. We have not considered the HOP1
gene in our analysis for the following reasons: (1) the URSL1 site is placed
much further upstream compared to all other genes; (2) the mutual distance
between URS1 and UASH sites is 336, which is substantially larger than that

Results
Discussion

References
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Table 2. DNA binding information for URS1 and UASH. Binding sites and positions |RCEEEEy

for eleven gene upstream regions from yeast are shown. All positions are relative to thqalt il Ee
annotated translation start sites of respective genes. Distances between binding Sit@szlel
are given. In boxes on the right are given the meanand standard deviatiom | of Methods
distances between URS1 and UASH binding sites. Statistics are given in separate box@s=5iis
for group 1 (genes 1-5), and group 2 (genes 6-10), and group 1 and 2 taken togethe s uyru

References

URS1
Gene #| Gene ID | Name S — UASH - Dist/|
Position Mapped Site Position Mapped Site

YDR285W | zIP1 | -22 TCGGCGGCTAAAT| 42 | GATTCGGAAGTAAA |20 ([~
YER044C-A| MEI4 | -98 TGGGCGGCTAAAT| -121 [TCTTTCGGAGTCATA | 23
YER179W | DMC1 | -143 | AAATAGCCGCCCA| -175 [TTGTGTGGAGAGATA| 32 “25
YHRO14W | SPO13 | -100 | AAATAGCCGCCGA| -119 | TTTTCTGAATAAAC | 19 . ”'80
YNL210W | MER1 { -115§ | TTTTAGCCGCCGA| -152 |GGTTTTGTAGTTCTA | 37 8
YHR153C | SPO16 | -90 | TGGGCGGCTAAAA | 201 |CATTGTGATGTATTT | 111 [, 2 567
YHR157W |REC104{ -93 TTGGCGGCTATTT | -182 [CAATTTGGAGTAGGC| 89 "
YLR263W | RED1 | -165 | TCAGCGGCTAAAT | -355 | ATTTCTGGAGATATC] 188 133
YMR133W [REC114] -94 | TGGGCGGCTAACT | -288 |GATTTTGTAGGAATA|194 | o

YOR351C | MEK1 ] -150 | ATGGCGGCTAAAT| -233 | TCATTTGTAGTTTAT | 83
YILO72W | HOP1 | -534 | AATTAGCCGCCGA | -198 | TGTGAAGT 336

O 0 0t A W o

—_
- o

in any other genes in the set; (3) in all cases other than HOP1, URSL1 site is
downstream compared to UASH. These reasons make HOP1 an exception §
far as positioning of the two sites are concerned. The average distance betwee
URS1 and UASH sites in the remaining 10 genes is 80 nucleotides with a
standard deviation of 67 nucleotides. Since Co-Bind performance decrease
when the distance between two sites is large, we wished to see whether th



program would be successful in detecting both URS1 and UASH sites from the Abstract

remaining 10 genes where the distance between sites is smaller compared
the HOP-1 gene. If Co-Bind did identify those sites effectively, HOP1 would [
then be included in the training set. Based on average distance between bindirgyinss
sites, the 10 genes can be divided equally into two groups of five genes eachersis
The average distance between URS1 and UASH sites in group 1 (genes 1-foEerats
Table 2 is much smaller (26 nucleotides) than the average distance betweeBEeeEs
sites in group 2 (genes 5-10) (133 nucleotides).
Alignment of mapped binding sites using Consensus indicate a length of
10 and 7 would be appropriate for URS1 and UASH sites respectively while
searching for those patterns in upstream regions. We aligned the experimentall
reported sites by the Consensus program in order to determine an appropria
length of the binding sites, because the factor binding sites are usuall
mapped using a multitude of techniques including DNase and hydroxyl radical
footprinting methods which frequently overestimate binding site lengths. All
URSL1 sites were 12—-13 longédble 2, but appeared to have a highly conserved
GCCGCC core. Most UASH sites were longer than 14 nucleotides, however,
a site of length 8 is reported for HOP1 gene in SCPD. The alignment gave a
consensus of T(A/G/T)GCCGCCTA (Information content in natsH@8.1) for
URS1 and TTTGGAG (ICG= 4.2) for UASH when considering sites from all 10
genes; TAGCCGCC(G/T)A (IG= 6.8) and TT(C/T)GGAG (IC= 3.9) for the
same sites when considering only the five group 1 genes. Thus, the UASH sitg
pattern is significantly weaker compared to URS1.
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Consensus, MEME, Gibbs Sampler and ANN-Spec were run on the promote Abetract

regions of (a) all 10 genes, or (b) group 1 genes, with appropriate pattern length
(10 for URS1 and 7 for UASH); only the positive strand of DNA was included in i
the search. In either case, binding site pattern for URS1 was efficiently obtained Y
URSL1 sites were deleted from the promoters and the programs run again t@5 s
identify a second pattern. However, the UASH site pattern was not obtained e,
Data for group 1 genes is shownTable 3 References
We realized physical deletion of URS1 sites can introduce an artificial pattern
in the sequences if regions around the deleted sites are conserved. To che
whether this leads to the failure in programs identifying UASH sites, we
observed different program runs from Consensus and MEME. Consensus allow
the user to ignore specific portions of input sequences (here, URS1 sites) whilg
searching for a pattern, and the MEME program allows the user to search fo
two (or more) non-overlapping patterns from a given data set. These results
(not shown) indicate deletion of URS1 sites did not lead to artifactual failure in
identification of the UASH pattern from promoter sequences. The UASH site
pattern is too weak to be identified from the promoter regions.
Co-Bind was able to efficiently identify both URS1 and UASH patterns
from group 1 genes. The Co-Bind program was initially run on the promoter
sequences of all 10 genes. Again, only the positive DNA strand was included
in the search. Length of binding patterns to be identified were set to 10 and
respectively. In each sequence, the second perceptron was allowed to samp
for sites within a distance of 200 nucleotides upstream of the site sampled b
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the first perceptron, since all UASH sites were within that distance upstream o
URSL1 sites. While using all 10 genes, the first perceptron efficiently identified
the URSL1 pattern but the second perceptron did not identify the UASH patterngs
(data not shown). Co-Bind was consequently run only on group 1 gene upstreargyssms
regions. In each sequence, the second perceptron was allowed to sample f@fFESS
sites within a distance of 50 nucleotides upstream of site sampled by thefEaratas
first perceptron, since in this set, all UASH sites were within 50 nucleotides GEEEIES
upstream of URS1 sites. Both URS1 and UASH sites were identified in this
case with high sensitivity. The results of program runs on group 1 gene upstrea
regions are summarized irable 3

Introduction

Algorithm and. ..

Identification of translation initiation sites

The thermodynamic principles on which Co-Bind is based can be applied
to other cases of cooperative, sequence-specific macromolecular interaction
Below we show, from a group d&.coli gene upstream regions, Co-Bind can
identify the translation initiation sites by combining the sequence signals in the
start codon and ribosome binding region.

From a purely sequence recognition point of view translation initiation is
analogous to recognition of DNA binding sites by two cooperatively acting
TFs. Here, the two binding components, the initiator tRNA and ribosome (or
16S ribosomal RNA), utilizes the sequence information in the mRNA start
codon and the Shine—Dalgarno (SD) sequei@tene and Dalgarndl974) to
recognize the correct translation initiation sit€uélerzi and Ponl990. The
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cooperativity between the two mRNA binding components can be imagined to Abstract

be mediated by the ribosome itself and the Initiation Factors (IEsklerzi
and Pon1990. Individually, the sequence information in either the start codon S
or the SD may be poor for the binding events to occur and formation of the JYim
pre-initiation complex. However, the combined information in the start codon =S
and SD sequence along with an optimal distance range between the two SiteEiEa s
are sufficient for recognition of the initiation sites, and effective binding of the BEEGES
initiator tRNA and ribosome for translation initiatioB&rrick et al., 1994).
Though the binding event involves the mRNA, the sequence information
required for the mRNA binding is encoded in the DNA. Consensus, MEME,
Gibbs Sampler and ANN-Spec were run on 50 long DNA sequences from
30 randomly choserk.coli genes {25 to 425, relative to annotated start
sites). Positive strand of DNA was used as input. We used searching length
of 3 (corresponding to the start codon) and 6, corresponding to the most
conserved region of SD sequence, AGGAG&@ngquistet al, 1992. With
searching length 3, most programs efficiently identify the ATG start codon.
When pattern searching length was 6 all program results included the ATG star
codon (fable 4A). The start codons were then deleted from all 30 sequences
and programs re-run. None of the programs were able to find the SD regio
from the sequences. We verified that deletion of the more conserved ATG site;
were not responsible for artifactual failure in identification of the SD pattern
using several Consensus and MEME runs. So, the SD region appears to ha
insufficient information to be detected by the above programs.
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Co-Bind was run on the same sequences. As before, only the positive stran

of DNA was used, and lengths of patterns to be identified were set to 3 and
respectively. In each sequence, the second perceptron was allowed to sampyss

sites within 15 nucleotides upstream of sites sampled by the first perceptronysm
This is because, ic.coli most SD regions are located within 15 nucleotides [FFESis
upstream of the start codoRifigquistet al,, 1992). Out of the top scoring 10 Discussion
runs, the four highest scoring runs yielded the correct patterns for both the starREREues
site and SD regionTable 8), and for those runs, both sites were correctly
identified in all individual sequences.

Introduction

Algorithm and. ..

Comparison of Co-Bind and BioProspector results

Since BioProspectori{u et al, 200]) is the only other available method for
identifying two closely placed patterns in sequences, we compared results o
Co-Bind and BioProspector program runs on yeast semi-artificial data setg
where two different artificial motifs were implanted in each sequence of the
set. BioProspector allowed a maximum distance of 50 nucleotides betwee
two binding site motifs, so it was run only on those data sets where the
distance between two implanted sites were either 25 or 50 nucleotides. Bot
strands of DNA were included in the search and the expected frequency o
either motif was set to one per sequence. Whereas Co-Bind identifies bot
implanted patterns correctly from these training sétb(e B), in most cases
no statistically significant patterns were obtained by BioProspector. In no cases
did BioProspector identify both patterns correctly. In one instance one binding
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site pattern was identified correctly (viz. AATCGCGTTA where its mutation
rate was 0.18) (details not shown). In BioProspector, significance of each moti -
found is judged based on a motif score distribution estimated by a Monte Carlofis
method. Only those motifs with scores greater than five standard deviation< Y
above the motif score distribution mean are reported by the program. WeF=Esis
decreased the threshold score for motif reporting from five to three standariEeres
deviations above the mean. This did not increase the number of correctlyEEEEEES
identified patterns, and again, in no case were both patterns identified correctl
Thus, when tested on identical training sets derived from yeast sequences
Co-Bind shows significantly improved performance over BioProspector in
identification of closely positioned sequence motifs.

| Introduction



Table 3.Pattern identified from the upstream region of 5 group 1 genes. For ANN-Spec,
as inTable 1 the consensus from the weight matrices for top ten scoring runs are falEiulikUTRs
shown. Results which match the consensus pattern for known sites are marked witieEe!
*. For Co-Bind, consensus patterns from the two different weight matrices are showrn{Eiiss
for top ten scoring runs. Eight times out of tenoth URS1 and UASH patterns are

identified correctly by Co-Bind

Identified
Patterns Pattern 1 Pattern 2
Programs
Consensus TAGCCGCC(GIT)A* | GCGCCAT
MEME GCCGCCCAAG* GCGCCAT
Gibbs Sampler | TAGCCGCC(G/T)A* | AGAAAAC
Ann-Spec 10 0
TAGCCGCCGA* AGCGCCA
TAGCCGCCGA* AGCGCCA
TAGCCGCCTA* GCGCCAG
TAGCCGCCGA* AGCGCCA
GCCGCCGAAA* AGCGCCA
GCCGCCGAAA* GCGCCAG
GCCGCCGTAA* AGTTGAG
GCCGCCCTAA* TAAACGG
GCCGCCCAAA* AGTTGAG
GCCGCCGACA* GCGCAAG
GCCGCCGACA* TTCGGAG*
Co-Bind TGGCCGCCGA* TTTGGAG*
0-Bin TGGCCGCCGA* TTCGGAGH
8 GGCCGCCTAA* GTTCGGA*
GCCGCCCAAA* GTTCGGA*
AGCCGCCGAA* TTGGAGT*
AGTCGAGTAC GCGCCAT
AGCCGCCGAC* TTCGGAA*
AGCCGCCGAC* TTGGAGT*
ATAGCCGCCG* CTCGGAA

Abstract

Introduction

Results
Discussion

References



Abstract

Table 4. Recognition of translation initiation sites. (A) ‘First pattern’ indicates 3 or |RACEERI

6 long patterns identified by different programs from the 50 I&hgoli sequences. Algorithm and....
‘Second pattern’ indicates patterns identified from the data upon deletion of ATG start|sz!
sites from the sequences. Patterns are consensus representations of weight matriqEERGeLE
produced by the programs. For ANN-Spec, all top ten scoring runs were consistentizEais
and are represented by only one consensus sequence. (B) Co-Bind resuEsdotim Discussion
sequences. Top four of Co-Bind runs identified both the start site and the SD regioryysmmms
correctly. Consensus from the two weight matrices from these four runs are shown

Table 4A

Identified First Pattern
Patterns Second Pattern
Programs 3 ong 6-1 ong
Consensus ATG CATGAA | TTT(GM)T(CIG)
MEME ATG ATGAAA TTGTTG
GibbsSampler | ATG ATGAAA | TT(GIT)TT(C/G)
Ann-Spec AAA ATGAAA GAAAAA
Table 4B
First Pat.| Second Pat.
ATG AGAGGA
ATG AGGAGT
ATG AGGAGT
ATG AGGAGT
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Information content and binding energy Data

Information content of binding sites may be directly related to the binding RZSSEsE
energy of TFs to those sites (for a review se®wrmo and Fields1998), Results
and thus to the objective functions we define in equatidBguétion 9 BEclesIoN
and Equation §. It has been shown that in random genomes with no [k
compositional inhomogeneities, where the probability of observing a site can
be approximated by the genome base priors, the average binding energy of a
to a collection of its binding sites is related to the information contiefds Of

an alignment of those sites by the equation:

(AG) = —RT(Isited (10)

lsites = Zp.k f (b, K)In &Bk)’ where,p(b) is the genome composition for each
base, andf (b, k) is the fraction of each base present in each posikormf

the site Stormq 1999. In the case where binding of two TFs are considered,
suppose the average binding energy of one TF is giveri&(1) and that of

the other is given byAG,). The average combined binding energy may then
be given by the sum of the binding energiéAGi 2) = (AG1) + (AGy) =
—RT(l1 + 12). This would be the case if there were no uncertainty in the
positioning of binding sites with respect to each other. However, in a case whereg
there is such uncertainty, the above combined binding energy is an overestimats
since the positional uncertainty has not been taken into account.
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Positional uncertainty and spacing between sites

Introduction

If the second site could be located anywhere within a windo@ oficleotides Algorithm and.....
of the first site, the loss in information due to this positional uncertainty can be g
given by Schneideet al,, 1986): Methods

Results
1 1 1 Discussion
Ipos: N Z]: 3 In (3) ==In <3> - In(J) (11) References
and the average combined binding energy can be given by:

(AG1,2) = (AG1) + (AG2) — (AGpog)
=—RT(1+ 12 — lpos). (12)

The objective function defined for Co-Bind is directly related to the combined
binding energy EEquation §. Hence, the smaller the value df the greater
the combined binding energy and the greater is the maximum value of
objective function expected from the training data. This consequently meang
the perceptron weights will be better able to define the two binding site patterns
in the training set ifJ is small. EquationsEquation 1Q)~(Equation 12 are
true only for random genomes, however, they may explain why the sensitivity
of correct answers from Co-Bind decreases when the binding sites are furthe
apart (in semi-artificial datdable b, or in case of URS1 and UASH sites).
Coordinate positioning is an important aspect of combinatorial DNA binding
by TFs Fickett 1996 Wasserman and Fickett998 Wagner 1999. Results




Expectation of pattern identification

of Co-Bind show that weak binding sites are more efficiently identified where Abstract

binding sites are located close together. In some instances, positional constrain
for DNA binding sites of cooperatively acting TFs have been observed to be i

much more stringentHckett 1996. Thus, whereever possible, imposing such [y
positional constraints on the two perceptrons may improve the sensitivity of .
binding site identification by Co-Bind. Discussion

References
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The amount of information needed to identjfysites out of a possiblE may be
given by:1, = —In (¥) (Schneideet al, 1989. In semi-artificially generated
test sets, binding sites are 10 long, occur once in every 500 long sequence a
may be placed in either of the two DNA strands. In this case, only one out of
possible (49% 2 =) 982 positions could be the starting position of a real site
(thus,y = 1 andI’ = 982). The average information required to find sites
is then:—In (%ﬂ) or, 6.8 nats. For semi-artificial sequencéable Ja shows,
only those patterns which have more than 6.5 nats in information are identified
efficiently by multiple programs.
Now we describe a relationship between information content of binding sites,
spacing between them and expectation of pattern identification. For the sam
data-set as above, we ask what is the amount of information needed to identi
the second site, having found the first. Let the maximum permissible distancs
between two sites bB nucleotides. The total window lengti, within which
the second site can be located, is equal Iy &ince ordering of the two sites
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with respect to each other is random (i.e. the second site can be placed in eithg Abstract

direction, upstream or downstream, of the first site). The loss of information -
due to the uncertainty in the location of the second site with respect to the firs{s

is: —In (3) or —In (555) (Equation 1). Also, the second site can be placed on [N
either of the two DNA strands with respect to the first. The loss of information ¥
due to the uncertainty in the DNA strand, 4sin (%). Thus, the minimum Discussion
amount of information required to detect two sites within a distancé® of References
nucleotides of each other is given by:

= n()n()n)

The above arguments are exactly valid for random genomes, and is only a
approximation for non-random genomes. However, at least qualitatively, they
give an idea about how much information might be required to identify patterns
in a given set of sequences, and how much spacing variability can be allowablé
before we start failing to identify the signals for binding sites.

Table 5shows, for a pair of binding site motifs, the amount of information
content required for binding site identificatiohe), the amount of information
actually present in the binding site patterngcfa Which is the sum of
information contents of individual patterns), and the efficiency of identification
of those binding sites using Co-Bind. In theory, one would expect the efficiency
of binding site identification to decrease with decreaslgg (defined as
lactual— lreq), @nd the efficiency to be high wheg is positive and poor when
lgiff 1S negative. We see ihable § aslgi decreases, the efficiency of binding

Introduction
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site identification also decreases, and whhgin is a large negative value (e.g.

—2.5) efficiency of binding site identification by Co-Bind is poor. However, in
a few instances Co-Bind is able to identify sites efficiently even thdyghis Data

a negative value (e.g-0.4 and—1.1). The likely reasons for this are: (1) the Y=
genome is non-random; and (2) Co-Bind is not designed to obtain patterns withg¥ s
maximum information content. Co-Bind partitions against the whole genome [iEeiese
in order to identify sites with high specificity for the training set. In the yeast REREILS
genome there might be some frequently occurring sites (e.g. poly-A or poly-T)
with high information content in all gene upstream regions. Though information
rich, these sites are thus not specific for the training set and are not identified b
Co-Bind. The implanted sites may have lower information content but could be
more specific for the training set and hence are identified by Co-Bind.

Where individual patterns have less information, the combined information
content of two weak patterns becomes high enough for identification. In
semi-artificial data sets, the information content required to identify one 10
long binding site motif by itself (without the second site) is 6.8 nats. But in
the example where two sites are present together and the maximum distand
between the two sites i® = 25 nucleotides, individual binding sites can
have 5.7 nats of information and still be identified successfully when searcheqg
for their joint occurrence = 25 andJ = 50, giving lreq = 114 nats
(Equation 13). For URS1-UASH regulated genes, the information content
required to identify individual site patterns from the 300 long sequences is
roughly 5.7 nats. That may explain why UASH sites cannot be identified unless

Introduction
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Table 5. Information content of binding sites and expectation of pattern identification [RECEERIY

using Co-Bind. The training set used is where two patterns, AATCGCGTTA and Ealeliuluulps
GGATATATCC, with mutation rates 0.33 and 0.37 respectively, are implanted in 30, &l
500 nt long, yeast sequences (referTable B, last row). Information contents for Methods

the two patterns are 5.8 and 5.2 respectively. Maximum possible distéhda ( Results
discussion) between the two sites is given along with information content (IC) and [t
efficiency (Eff) of pattern identification with Co-Bindkel, is the information required References

to find both sites, as calculated frorBquation 13 in the discussion Sectiof.3
lactualis the sum total of information content contained in the two binding site motifs.
lgiff = lactual— lreq- Efficiency of Co-Bind in determining both sites correctly is taken
directly fromTable B (last row)

Max Dist
25 50 100 150 200
|.CEff
lreg 114 | 121 | 127 | 132 | 135
lgg | 140 | 110 | 110 | 110 | 110
| it 04 | 11 | 17 | 22 | -25
Co-Bind
Efficiency | 1© 8 4 4 1

in conjunction with URS1 sites using Co-Bind (note, alignment of UASH sites
gives information content around 4.0 nats). In the cas&.obli sequences,

we observe from Co-Bind results which identify both patterns correctly, the
information content of both ATG sites and the SD sequences are around 3.
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nats. The minimum information content required to identify sites from that ntroduction

training set is about 3.9 nats. ATG start codons are frequently identified by -
other methods but not the SD regicfable 4. Here again, by taking advantage S

of combinatorial information content, Co-Bind is able to identify both sites [y
correctly. Thus Co-Bind models the situation where binding of individual [
factors to respective binding sites may be weak, but cooperativity between twasaEsen
factors lead to efficient binding by increasing complex stability. References

Future improvements

Currently, specific pattern lengths need to be input in the program.
Automatically determining the appropriate binding site lengths for the patterns
should be very useful. As is common with gradient descent approaches, thg
objective function can get stuck in a local minimum. Hence, the program is
run multiple times and top scoring runs are considered. Several methods fo
avoiding such a problem are knowBdldi and Brunak1998 and references
therein) some of which could be implemented and examined.
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Conclusion

Results of Co-Bind presented indicate that it is able to model the synergy il
between the binding factors. It can identify weak patterns, which cannot be jgiss
identified by other available methods, by combining the sequence informationjii

in those patterns. Currently Co-Bind models cooperative binding by two factors,
but extension to more than two factors is possible. Given the universal nature
of transcriptional regulation by combinatorial binding of TFs, Co-Bind could
prove to be useful in discovering new regulatory sites for synergistically acting
TFs and understanding transcriptional regulatory mechanisms. The principles
of macromolecular binding on which Co-Bind is based are general, hence, it
may be extended beyond the scope of protein—-DNA binding to other cases
of macromolecular interactions, as evidenced from identification of translation
initiation sites inE.coli.
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