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Abstract
The purpose of this article is to provide a brief history of the development
and application of computer algorithms for the analysis and prediction of DNA
binding sites. This problem can be conveniently divided into two subproblems.
The first is, given a collection of known binding sites, develop a representation
of those sites that can be used to search new sequences and reliably predict
where additional binding sites occur. The second is, given a set of sequences
known to contain binding sites for a common factor, but not knowing where the
sites are, discover the location of the sites in each sequence and a representation
for the specificity of the protein.

Contact: stormo@ural.wustl.edu

At least since the discovery of thelac operon, and the realization that its
expression was regulated by a protein factor, a major objective in molecular
biology has been to understand sequence-specific binding of transcription
factors. The original sequencing of thelac operator (Gilbert and Maxam,
1973; Maizels, 1973; Dickson et al., 1975) and of theλ operators (Maniatis
et al., 1974, 1975a; Walz and Pirrotta, 1975) as well as some other promoter
regions (Pribnow, 1975) were significant accomplishments, especially when
one considers the laborious methods required in the days before rapid DNA
sequencing. After efficient DNA sequencing methods were introduced (Maxam
and Gilbert, 1977; Sangeret al., 1977), there was a rapid increase in the number
of examples of binding sites. Footprinting methods (Galas and Schmitz, 1978)
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and efficient methods of synthesizing DNA of any desired sequence (Goeddel
et al., 1977) were other technological breakthroughs that helped provide rapidly
increasing amounts of data. By the late 1970s there were many sequenced
examples of DNA binding sites, including many mutated sites with altered
activities. The total amount of DNA being sequenced annually was increasing
rapidly (as is true even now) and it was clear that computer programs were
needed to help identify important features in the sequences. In parallel with
the experimental work, theoretical analyses were undertaken to describe the
amount of information necessary for a regulatory system to function properly
(Lin and Riggs, 1975; von Hippel, 1979), and those analyses also contributed to
the perspectives on representing the specificity of protein-DNA interactions.
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Representing sites
One distinction became clear early on, which is that the specificity of a
regulatory protein is quite different from that of a restriction enzyme. The
recognition sequence for a restriction enzyme can be written as a simple DNA
sequence, such as GAATTC for the enzymeEcoRI, or a sequence that allows
ambiguity, such as GTYRAC for the enzymeHincII. All sites that match those
sequences will be cut (unless modified) and only matching sites will be cut.
Sites that mismatch at only one position will be cut less well by several orders
of magnitude (except under unusual buffer conditions where they can be more
tolerant of changes). Regulatory sites, on the other hand, often have differences
between any two sites. For example, in theλ operators, which contain 12
half-sites that one expects will interact with the proteins nearly equivalently,
only two of the eight positions are conserved among all the sites, and the other
positions have a range of variability (Maniatis et al., 1975b). The collection
of the first sixEscherichia colipromoter−10 regions had only two conserved
positions out of six, and differed at as many as four positions between two
sites (Pribnow, 1975). Despite the variability, the common features of the
−10 sites were visible because each example site was similar, with no more
than two mismatches, to a ‘consensus sequence’. It makes biological sense
that regulatory sites should be variable, whereas restriction sites should not.
Restriction enzymes are used as defense mechanisms to protect against viral
infection, and they need to have an all or none activity. They should cut any
DNA sites that are not protected by the cell’s own modification system, and
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at the same time be so specific so as to not make any cuts in the cell’s own
DNA. But regulatory systems can take advantage of the variability in the sites
to better control transcription. Not all promoters should have the same activity
because some proteins are required by the cell at much higher levels than
other proteins. The variability in expression can be partially attained by having
promoters with different intrinsic affinities for the RNA polymerase, which
implies different sequences in the binding sites. Likewise, regulatory proteins
often control the expression of several genes, but those genes may need to be
expressed at different levels, or may need to be regulated to different extents.
That too can be accomplished by having sites with different sequences and
different affinities for the protein. Of course the variability in the sites leads
to the complication that regulatory proteins have non-neglible affinity for DNA
at positions in the genome besides their functional sites. Such non-specific DNA
competes for binding to the protein with the sites, and requires that more protein
be synthesized than might otherwise be necessary. Considerations such as these,
and how they influence the specificity of the proteins and the amount of protein
needed for proper functioning of the regulatory system were the subject of
theoretical analyses (Lin and Riggs, 1975; von Hippel, 1979).

The concept of the consensus sequence has been widely used to represent the
specificity of transcription factors. But exactly how one is defined is somewhat
arbitrary. In general it refers to a sequence that matches all of the example sites
closely, but not necessarily exactly. There is a trade-off between the number
of mismatches allowed, the ambiguity in the consensus sequence, and the
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sensitivity and precision of the representation. Consider the six−10 regions
shown inFig. 1. If we use TATAAT as a consensus sequence and allow no
mismatches, we would only identify two of six sites, and there would be about
one match per 4000 bp of genomic sequence. If we allowed one mismatch, we
would identify three of six sites, and there would be about one match per 200 bp
of genomic sequence. We have to allow two mismatches to identify all six of six
sites, but then there would be a match about every 30 bp in genomic sequence. If
instead we use TATRNT as the consensus and allow no mismatches, we would
identify four of six sites and only have one match per 500 bp in the genome.
Allowing only one mismatch would identify all six of six sites, but again with
about one match per 30 bp in the genome. Other possible consensus sequences
can be defined as well, including some in which the allowed mismatches are
confined to certain positions rather than allowing them at all positions, although
this approach is uncommon. So while it is easy to write a consensus sequence
to represent a collection of sites, it is not so straightforward to find one that is
optimal for predicting the occurrence of new sites. Day and McMorris (1992)
compared several methods for generating consensus sequences and outlined
their strengths and weaknesses.

An alternative to consensus sequences is a weight matrix representation of
the sites.Fig. 2 shows a weight matrix to represent the−10 region. There is
a matrix element for all possible bases at every position in the site. The score
for any particular site is the sum of matrix values for that site’s sequence. For
example, the score for the consensus sequence TATAAT is the sum of the boxed
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Fig. 1. The −10 region of the six promoters fromPribnow(1975), and two possible
consensus sequence representations.

elements, 85. Any sequence that differs from the consensus will have a lower
score, but the decrease depends on the differences. This is a convenient way to
account for the fact that some positions are more highly conserved than others,
and presumably are more important for the activity of the site. It is important
to note that a consensus sequence can always be converted into a weight matrix
such that the same set of sites will be matched, but the converse is not true.
There is still the issue of what threshold one would use to predict sites, and
the same concerns for sensitivity and precision need to be addressed. Also, the
major issue with weight matrix methods is how to pick the elements of the
matrix to represent the sites. The matrix inFig. 2 does not come from the six
examples shown inFig. 1, but rather is based on a much larger collection of−10
regions that were published several years later (Hawley and McClure, 1983;
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–15 –38 –8 –10 –3 –32
–13 –48 –6 –7 –10 –48

17 –32 8 –9 –6 19

Fig. 2. Weight matrix represenation for−10 region ofE.coli promoters. The boxed
elements correspond to the consensus sequence TATAAT.

Stormo, 1988). Several methods have been proposed to determine the weights
for any particular collection of sites, as described below. But regardless of how
the matrix weights are determined, there are efficient methods for calculating
the distribution of scores that can be used to determine statistically significant
matches (Staden, 1989; Claverie and Audic, 1996).

The first usage of weight matrices was actually not for DNA sites, but
for RNA sites that function as translation initiation sites inE.coli (Stormoet
al., 1982b). Shine and Dalgarno(1974) had sequenced the 3′ end of the 16S
rRNA and found that it was complementary to a short sequence upstream
of the initiation codon for several genes (Steitz, 1969). We were studying
translation initiation and wondered whether the Shine/Dalgarno sequence (as
the complementary regions became called) and the initiation codon, usually an
AUG, were sufficient to identify ribosome binding sites. As more sequences
were published many examples of sites that had Shine/Dalgarno sequences
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upstream of AUGs appeared and yet, to the best of our knowledge, did not
function as translation initiation sites. Because these were mRNA sequences
there could be a contribution of the secondary structure in determining whether
a particular site could function as a ribosome binding site, and indeed there
are examples where the structure can act to block ribosome binding (de
Smit and van Duin, 1990). But we wondered whether there were other
sequence features that could be used to distinguish true ribosome binding
sites from other sites with similar sequences. We collected all of the available
E.coli and coliphage sequences into a database (Schneideret al., 1982) and
attempted to find sequence patterns that would distinguish the true sites
from ‘non-sites’. We tried many different consensus sequences, including
a rule-based system that incorporated several different consensus sequences
into a single predictor (Stormo et al., 1982a). While this approach gave
improvments over simple consensus sequences, it was still not completely
reliable. We also noticed that sequences within and around the ribosome
binding site, besides the initiation codon and Shine/Dalgarno sequences, were
highly biased (Gold et al., 1981). This led us to the hypothesis that maybe
many bases in the ribosome binding region of the mRNA could interact with
the ribosome and that the probability that it would bind sufficiently well
to initiate translation was the sum of all of the contributing interactions.
Some interactions were more important than others, and therefore more highly
conserved, but many positions around the start codon could influence its
activity. Sites whose total contribution exceeded some threshold would be
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bona fide translation initiation sites, and those below the threshold would
not. Thus was born the idea of a weight matrix as a representation of a
collection of functional sites and the specificity of the protein that bound to
them.

The first major task, of course, was to determine the appropriate values of the
weights for the matrix. We wanted a matrix that was capable of distinguishing
true sites from non-sites and we had many examples of each in our database. It
was then that Andrzej Ehrenfeucht, a professor of computer science, suggested
we try a ‘Perceptron’ algorithm (Stormoet al., 1982b). This is a simple neural
network that learns from examples. In our case, the weights of the matrix are
the same as the weights of the network, and we train it on our example sites and
non-sites to find a matrix and a threshold that distinguishes the two sets. We
were able to find such matrices, a result that is not too surprising since we had
so many free parameters, all of the weights in the matrix, and a relatively limited
amount of training data. However, the result that convinced us that the idea had
real merit was that when we searched new sequences not included in the set we
used for training the weights, the matrix method was both more sensitive and
more precise than the best consensus method available (Stormoet al., 1982b).

In the next 2 years three papers were published that used alternative methods
of obtaining weight matrices from purely statistical analyses of exampleE.coli
promoters (Harr et al., 1983; Mulligan et al., 1984; Staden, 1984). The method
introduced by Staden is very similar to current methods. In fact, except for
not allowing insertions and deletions within the sites, it is the same method
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commonly used in hidden Markov models of protein families (Eddy, 1998). In
this method the weights are simply the negative logarithms of the frequencies
of each base at each position. So the sum for any particular site is just the
negative logarithm of the probability of observing that particular sequence in
the collection of known sites (assuming the positions are independent).

In Mulligan et al. (1984) it was shown that there was a strong correlation
between the score for any particular sequence and its activity as a promoter.
This demonstrated that the model of interaction implied by the matrix approach
was, at least, not unreasonable. If the weights really correspond to features
involved in the recognition process, then having more ‘good’ features should
lead to higher activity. We then realized that if one had sufficient quantitative
data, in the form of many sequences and the functional activity of each one, you
could simply solve for the matrix weights that gave a best fit to that quantitative
data (Stormoet al., 1986). One advantage of this approach is that one can also
determine if the best fit is actually good. It might not be if the underlying model
is not appropriate. For example, in the standard weight matrix the scores for
each position are added together to get the total score, which implies that each
position contributes independently to the activity. If that assumption is not a
good approximation then even the best fit will not be very good. In that case
one can make more complicated models, for instance where the elements of
the matrix correspond to di-nucleotides at the positions in the sites, rather than
mono-nucleotides (Stormoet al., 1986; Zhang and Marr, 1993). So this method
not only obtains the best matrix for the available quantitative data, but can
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indicate something about the mechanism. The limitation is that quantitative data
for many example sites is laborious to obtain, so this approach has been used
only rarely (e.g. seeBarricket al., 1994).

At the same time Tom Schneider was examining several different regulatory
systems for which many binding sites were known. He was primarily interested
in the ‘information content’ of the sites, and how that compared with their
frequency in the genome (Schneideret al., 1986). The information content at
a position in a site was defined to be

I i = 2 +

T∑
b=A

fb,i log2 fb,i (1)

wherei is the position within the site,b refers to each of the possible bases,
and fb,i is the observed frequency of each base at that position.I i is between 0,
for positions that are 25% of each base, and 2bits for positions completely
conserved as one base. Furthermore, for most of theE.coli sites studied, the
total information content matched very closely their frequency in the genome
(Schneideret al., 1986).

Berg and von Hippel(1987), employing statistical mechanics theory, showed
that the logarithms of the base frequencies should be proportional to the binding
energy contribution of the bases. This idea fits nicely with the information
content analysis and suggested that the information content was related to the
average binding energy for the collection of sites. However, (Equation 1) and
the analysis presented by Berg and von Hippel are only appropriate for genomes



Abstract

Representing sites

Discovering sites

Summary and . . .

References

� �

� �

GO BACK

CLOSE FILE

with 25% of each base. Some species have very biased genome compositions,
such as 64% A+T for Saccharomyces cerevisiae. In such a genome (Equation 1)
would indicate positive information content, and therefore specific binding
energy, for any collection of randomly chosen ‘sites’. However, a more general
form of (Equation 1) accounts for the genomic base probabilities:

Iseq(i ) =

∑
b

fb,i log2
fb,i

pb
(2)

where pb is the frequency of baseb in the whole genome. (Equation 1) is
a special case of this formula withpb = 0.25 for all b (Schneideret al.,
1986; Stormo, 1988, 1990). Iseq is also known as the relative entropy and the
Kullback–Liebler distance. It is also a normalized log-likelihood ratio statistic
and so can be used to estimate the statistical significance of the pattern (Stormo,
1990). However, we came upon the best justification for using (Equation 2)
as the estimate for binding energy contributions a few years ago. Consider an
example where we have a collection of functional binding sites that are each
known to have high affinity for the protein, although the exact affinity is not
known. Suppose we also know the complete genome sequence of the organism
that the protein and the sites are from. Following the additivity assumption
that each position contributes independently to the total binding energy, there
is some matrixH(b, i ) that contains those binding energy contributions as its
elements. Given any particular sequenceSα, its total binding energy is then
given by H(b, i ) · Sα, where the dot-product of the matrix and the sequence
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is as shown inFig. 2. The probability that the protein would be bound to the
site with sequenceSα, considering all of the possible binding sites in the whole
genome, is

P(Sα is bound) =
e−H(b,i )·Sα

Z
(3)

whereZ is the partition function, the sum of the binding affinities over all the
sites in the genome. Since we know that the functional sites in our collection
must have high binding probabilities, we are justified in finding the matrix that
maximizes the probability of binding to all of those sites. If we make one further
assumption this is easy. If we assume that the genome is essentially random,
thenZ can be calculated analytically (Heumannet al., 1994). Genomes are not
random sequences, but the assumption is valid if short subsequences, the length
of the binding site, occur with frequencies expected from the base composition
of the genome. At that level, the assumption of random genomes is often not
too bad an approximation. Also under that assumption it is easy to show that the
elements ofH(b, i ) that maximize the probability of binding to the collection
of known functional sites is simply (Heumannet al., 1994)

H(b, i ) = − ln
fb,i

pb
(4)

Therefore, if one has only a collection of known binding sites for a particular
protein, (− ln fb,i /pb) is a maximum probability estimate for the binding
energy contribution of each base at each position, andIseqis the average binding
energy of all the known sites (Stormo and Fields, 1998).
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One limitation of the weight matrix approach is the assumption that
the positions in the site contribute additively to the total activity. More
complicated models are possible within the framework of the matrix method,
as mentioned above (Zhang and Marr, 1993; Stormoet al., 1986). However,
those require some prior information about what positions are non-independent.
An alternative is to use a more general neural network than the simple
Perceptron described earlier. A neural network that contains hidden layers,
not connected to either the input sequence or the output score, are capable of
discovering correlations in the data and taking advantage of them for purposes
of discrimination (Horton and Kanehisa, 1992). Because promoter prediction in
E.coli remains a difficult problem, with even the best matrix methods being less
sensitive and less precise than desired, several groups have used general neural
networks to try and get better discrimination (Demeler and Zhou, 1991; O’Neill ,
1991; Horton and Kanehisa, 1992). These methods were able to show improved
discrimination on the training data, but when tested on new, independent data
did not show significant improvements over the simple weight matrix methods
(Horton and Kanehisa, 1992).
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Discovering sites
The same division of approaches, between consensus sequences and weight
matrices, can be used to classify methods for pattern recognition. In this
problem one has a collection of sequences that are known to contain binding
sites for a common factor, but neither the positions of the sites nor the specificity
of the factor are known. Such data might be obtained through genetic or
biochemical means, but the recent invention of expression array techniques
provides a new, rapid method of identifying sets of genes that appear to be
coregulated (Spellmanet al., 1998; Lashkariet al., 1997; DeRisiet al., 1997).
Hence there have recently been several papers describing methods for finding
transcription factor patterns for collections of genes.

Consensus approaches to the problem of site discovery really go back
to the original papers that sequencedE.coli promoter regions. From those
few sequences the−10 and the−35 consensus sequences were determined
‘by eye’ (Pribnow, 1975; Rosenberg and Court, 1979). That was possible
because there were only a few sequences and they could be approximately
aligned because the start of transcription was known, at least for many of the
sequences. It was observed that all of the sequences had very similar sites at
two locations, approximately 10 and 35 bases upstream of the start. However,
as more sequences were collected and with less information available about
how to align them, computer algorithms were required to locate the important
features. The first such algorithm was byGalas et al. (1985) who looked
for common words and their ‘neighbors’, which are approximate matches to
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those words, over a window of possible alignments. A similar algorithm was
also developed byMengeritsky and Smith(1987). Within the past several
years a variety of algorithms designed to identify consensus sequences from
unaligned DNA sequence have emerged (Staden, 1989; Pesoleet al., 1992;
Roytberg, 1992; Frech et al., 1993; Lefevre and Ikeda, 1993; Ulyanov and
Stormo, 1995; Wolfertsteteret al., 1996; Rigoutsos and Floratos, 1998). A
review of these methods, and their use for both DNA and protein motifs, was
published recently (Brazmaet al., 1998a). These consensus methods have been
applied to collections of yeast genes known to be coregulated, or expected to
be coregulated based on expression array analysis (van Heldenet al., 1998;
Brazmaet al., 1998b). On control sets, where the correct patterns are known,
the methods usually perform quite well. So it can be expected that patterns they
identify that are not already known may also correspond to new transcription
factor binding sites.

The alternative approach is to search directly for a weight matrix that
serves to discriminate well between the sequences known to be coregulated
and other, mostly unregulated sequences. We originally developed a method
to do that using a greedy algorithm that builds up an entire alignment of
the sites by adding in new ones at each iteration (Stormo and Hartzell,
1989; Hertz et al., 1990). The criterion for identifying the best alignment of
potential sites was to choose the one with highest information contentIseq.
Recent advances allow us to calculate a p-value for the alignment and use
that as the criterion to rank different alignments (Hertz and Stormo, 1999). An
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expectation–maximization (EM) method was developed for the same problem
by Lawrence and Reilly(1990). The EM approach can be described briefly as an
iteration between two steps. As shown inFig. 2, given a matrix one can calculate
the score for all possible binding sites on a sequence. Using that score one
obtains a weighted alignment of all the possible sites. The alignment is used to
derive a new matrix representation for those sites. Those two steps are repeated
until the method converges, which it is guaranteed to do. While not guaranteed
to always find the optimal alignment of sites, it generally works quite well and
often finds the correct sites and the matrix to represent them. Bailey, Grundy
and Elkan have also developed an EM approach to this problem (Bailey and
Elkan, 1994, 1995; Grundyet al., 1996), which is implemented in the MEME
program. The MEME method allows for the simultaneous identification of
multiple patterns. Lawrence and colleagues also developed a ‘Gibbs’ Sampling’
variation of the EM method (Lawrenceet al., 1993) which has also been used
to define weight matrices for known transcription factors (Schug and Overton,
1997). Zhang has recently developed a version of the EM method and used it on
sets of coregulated yeast genes (Spellmanet al., 1998; Zhu and Zhang, 1999)
and a similar approach has been used onE.coli (Robisonet al., 1998).

In most of these methods to identify the weight matrix directly from the
unaligned sequences, the criterion for the best alignment is the one with
maximum information content. This compensates for the base composition
of the genome and often identifies the proper sites. However, sometimes the
assumption of a random genome is too poor an approximation, and instead of
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finding the proper sites the methods identify some other patterns that appear
to be significant but are not discriminatory for the promoters in the collection.
For example, many yeast promoters have unexpectedly common stretches of
poly(A) or poly(T) sequences, and those can appear as the patterns identified by
the programs. But those patterns occur in many promoters, not just the subset
known to be coregulated, and so cannot be the binding site of interest. Under
such circumstances, the method using the partition function, briefly described
above, can be used. It looks for the weight matrix that maximizes the probability
of binding to the promoters in the collection, given the background of actual
competing sites in the genome (Heumannet al., 1994). This approach has been
used on several sets of yeast genes and shown to work even when some of the
other methods have failed (Workman and Stormo, 2000).
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Summary and prospects
Over the last 25 years an enormous amount has been learned about transcription
factor interactions with DNA sequences. Many of their structures have been
solved by crystallography and there are many more known binding sites for a
large collection of factors. Although not perfect, methods for representing the
specificity of the factors are generally pretty reliable and can be used to search
genomic DNA to predict new potential binding sites. The largest problem is
that there tend to be many false positives in such searches. These are probably
sites that would bind to the protein if they were available, but they are probably
sequestered most of the time. The pattern recognition methods also work fairly
well, and can usually be relied upon to uncover at least the sites involved in
the coregulation of the collection of identified genes. However, we are still
not able to reliably determine the complete set of regulatory interactions for
complicated promoters typical of metazoans. These are usually regulated by
multiple factors, often interacting cooperatively with one another. So there are
still significant challenges to solve in order for us to take full advantage of the
genomic sequences that are being determined increasingly rapidly, especially
to be able to infer regulatory networks from the sequence alone, or even using
both the sequence and expression information.
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